带校正的近似反褶积——高雷诺数和磁雷诺数下磁流体动力流动的高保真模型

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Yasasya Batugedara, A. Labovsky
{"title":"带校正的近似反褶积——高雷诺数和磁雷诺数下磁流体动力流动的高保真模型","authors":"Yasasya Batugedara, A. Labovsky","doi":"10.1515/cmam-2022-0254","DOIUrl":null,"url":null,"abstract":"Abstract We propose a model for magnetohydrodynamic flows at high Reynolds and magnetic Reynolds numbers. The system is written in the Elsässer variables so that the decoupling method of [C. Trenchea, Unconditional stability of a partitioned IMEX method for magnetohydrodynamic flows, Appl. Math. Lett. 27 (2014), 97–100] can be used. This decoupling method is only first-order accurate, so the proposed model aims at improving the temporal accuracy (from first to second order), as well as reducing the modeling error of the existing turbulence model. This is done in the framework of the recently developed LES-C turbulence models [A. E. Labovsky, Approximate deconvolution with correction: A member of a new class of models for high Reynolds number flows, SIAM J. Numer. Anal. 58 (2020), 5, 3068–3090]. We show the model to be unconditionally stable and numerically verify its superiority over its most natural competitor.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Approximate Deconvolution with Correction – A High Fidelity Model for Magnetohydrodynamic Flows at High Reynolds and Magnetic Reynolds Numbers\",\"authors\":\"Yasasya Batugedara, A. Labovsky\",\"doi\":\"10.1515/cmam-2022-0254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We propose a model for magnetohydrodynamic flows at high Reynolds and magnetic Reynolds numbers. The system is written in the Elsässer variables so that the decoupling method of [C. Trenchea, Unconditional stability of a partitioned IMEX method for magnetohydrodynamic flows, Appl. Math. Lett. 27 (2014), 97–100] can be used. This decoupling method is only first-order accurate, so the proposed model aims at improving the temporal accuracy (from first to second order), as well as reducing the modeling error of the existing turbulence model. This is done in the framework of the recently developed LES-C turbulence models [A. E. Labovsky, Approximate deconvolution with correction: A member of a new class of models for high Reynolds number flows, SIAM J. Numer. Anal. 58 (2020), 5, 3068–3090]. We show the model to be unconditionally stable and numerically verify its superiority over its most natural competitor.\",\"PeriodicalId\":48751,\"journal\":{\"name\":\"Computational Methods in Applied Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/cmam-2022-0254\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/cmam-2022-0254","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

摘要我们提出了一个高雷诺数和磁雷诺数下的磁流体动力学流动模型。该系统以Elsässer变量编写,因此可以使用[C.Trenchea,磁流体动力学流的分区IMEX方法的无条件稳定性,Appl.Math.Lett.27(2014),97–100]的解耦方法。这种解耦方法只有一阶精度,因此所提出的模型旨在提高时间精度(从一阶到二阶),并降低现有湍流模型的建模误差。这是在最近开发的LES-C湍流模型[A的框架内完成的。 E.Labovsky,带校正的近似反褶积:一类新的高雷诺数流动模型的成员,SIAM J.Numer。Anal。58(2020),53068–3090]。我们证明了该模型是无条件稳定的,并在数值上验证了其相对于最自然竞争对手的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate Deconvolution with Correction – A High Fidelity Model for Magnetohydrodynamic Flows at High Reynolds and Magnetic Reynolds Numbers
Abstract We propose a model for magnetohydrodynamic flows at high Reynolds and magnetic Reynolds numbers. The system is written in the Elsässer variables so that the decoupling method of [C. Trenchea, Unconditional stability of a partitioned IMEX method for magnetohydrodynamic flows, Appl. Math. Lett. 27 (2014), 97–100] can be used. This decoupling method is only first-order accurate, so the proposed model aims at improving the temporal accuracy (from first to second order), as well as reducing the modeling error of the existing turbulence model. This is done in the framework of the recently developed LES-C turbulence models [A. E. Labovsky, Approximate deconvolution with correction: A member of a new class of models for high Reynolds number flows, SIAM J. Numer. Anal. 58 (2020), 5, 3068–3090]. We show the model to be unconditionally stable and numerically verify its superiority over its most natural competitor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
54
期刊介绍: The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs. CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics. The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信