BiodegradationPub Date : 2025-09-30DOI: 10.1007/s10532-025-10195-5
Uchechukwu Chinwe Nebo, Daniel Juwon Arotupin, Adewale Oluwasogo Olalemi
{"title":"Biodegradation of heavy petroleum polycyclic aromatic hydrocarbons (PAHs) in polluted soil by biofilm-forming Bacillus tropicus UCB and Pseudomonas aeruginosa SYLI isolated from crude oil-contaminated sludge","authors":"Uchechukwu Chinwe Nebo, Daniel Juwon Arotupin, Adewale Oluwasogo Olalemi","doi":"10.1007/s10532-025-10195-5","DOIUrl":"10.1007/s10532-025-10195-5","url":null,"abstract":"<div><p>Crude oil pollution poses a threat to soil ecosystems, particularly in oil-producing regions. This study assessed the biodegradation potential of biofilm-forming <i>Bacillus tropicus</i> UCB and <i>Pseudomonas aeruginosa</i> SYLI isolated from crude oil sludge. Sludge samples were seasonally collected and bacterial counts determined using standard methods while microbial enrichment was conducted in mineral salt medium containing 1% crude oil. Biofilm formation was assessed using Congo red agar and microplate assays. Isolates were identified through cultural, biochemical, and 16S rDNA analysis. Dose–response toxicity test examined degradation across 1%, 3%, 7%, and 10% crude oil concentrations, while PAHs degradation in soil microcosm was analysed using GC–MS. Seasonal variations significantly influenced bacterial populations, with highest count (1.53 × 10<sup>8</sup> CFU/mL) in the dry season and the least 3.17 × 10<sup>6</sup> CFU/mL) during wet season. Optical density peaked at 2.86 nm in enrichment III. Results revealed molecular identities of the isolates as <i>B. tropicus</i> UCB and <i>P. aeruginosa</i> SYLI. Both isolates metabolized crude oil from 1 to 10%, with <i>B. tropicus</i> producing 601 mg/L CO₂ with 10% at day 12 and <i>P. aeruginosa</i> yielding 616 mg/L with 1% at day 4. In addition, results showed over 99% removal of low molecular weight PAHs and 75% degradation of high molecular weight PAHs, upon biostimulation. These findings highlight complementary strengths of <i>B. tropicus</i> on high-oil loads and <i>P. aeruginosa</i> rapid initial degradation at lower concentrations. This study suggests that biofilm formation coupled with biostimulation may improve bacterial efficiency in bioremediation. It also represents the first in vitro report on PAHs degradation by <i>Bacillus tropicus</i>.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 5","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145197554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiodegradationPub Date : 2025-09-30DOI: 10.1007/s10532-025-10186-6
Mahesh Mohan, Zain Ul Abedien, Prasad Kaparaju
{"title":"Thermophilic anaerobic digestion of polylactic acid, polyethylene and polypropylene microplastics: effect of inoculum-substrate ratio and microbiome","authors":"Mahesh Mohan, Zain Ul Abedien, Prasad Kaparaju","doi":"10.1007/s10532-025-10186-6","DOIUrl":"10.1007/s10532-025-10186-6","url":null,"abstract":"<div><p>Microplastics (MPs) generated from major plastic polymers have impacted the environment and formulation of an end-of-life scenario is a need of the hour. In the current study, the effects of inoculum to substrate ratios (ISR) 2, 4 and 6 on the MPs from polyethylene (PE), polypropylene (PP) and polylactic acid (PLA) under thermophilic and mesophilic anaerobic digestion (AD) conditions was studied. The results indicated thermophilic AD to be a prospective method for PLA degradation with a maximum cumulative biogas production of 894.08 NmL/gVS<sub>added</sub> at ISR4 and 89.62% of volatile fatty acids (VFA) was utilised during 148 days of incubation. However, the thermophilic AD of PP and PE was observed to be highly inefficient with a maximum biogas production of 111.64 and 47.48 NmL/gVS<sub>added</sub> and also resulted in VFA accumulation. Under mesophilic AD conditions, PLA degradation was highly inefficient due to long hydrolysis time, whilst inhibition was noticed with both PP and PE. The microbiological study revealed the abundance of Firmicutes and Synergistota<i>,</i> genus D8A-2, <i>Thermovirga</i> and Candidatus Caldatribacterium during thermophilic AD of PLA. An abundance of <i>Methanothermobacter</i> indicated hydrogenotrophic methane production as the major pathway for methanogenesis during thermophilic AD of MPs. An abundance of PWY-3781 associated with detoxification of reactive oxygen species was observed in the AD of PP and PE. Overall, the study provided insight into the prospects for improving thermophilic AD for PLA.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 5","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10532-025-10186-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145197549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiodegradationPub Date : 2025-09-30DOI: 10.1007/s10532-025-10193-7
Nguyen Thi Hong, Le Duy Khuong
{"title":"Isolation and identification of a novel cellulolytic bacterium and optimization of FPase production for bagasse hydrolysis","authors":"Nguyen Thi Hong, Le Duy Khuong","doi":"10.1007/s10532-025-10193-7","DOIUrl":"10.1007/s10532-025-10193-7","url":null,"abstract":"<div><p>The current study’s primary objectives were to screen for novel FPase-producing bacteria and optimize hydrolysis conditions for alkali-thermally pretreated sugarcane bagasse. This study carefully screened cellulolytic bacteria from soil and identified KH-08 as a potent FPase-producing strain. Based on 16S ribosomal RNA and gyrA gene sequences, KH-08 was identified as <i>Bacillus velezensis</i>, a newly found microbe capable of producing FPase. Experiments were conducted to optimize FPase-producing parameters such as fermentation time, temperature, and pH. The study improved FPase output by refining these parameters using Box-Behnken Design (BBD) and Response Surface Methodology (RSM). The derived quadratic polynomial model demonstrated great dependability (R<sup>2</sup> = 99.8%) and interactions that are statistically significant (P < 0.05). The ideal fermentation conditions—6 days, 30 °C, and pH 6.5—resulted in the greatest FPase activity of 75.93 U/L. The remarkable enzyme yield achieved under mild conditions clearly demonstrates the superiority of <i>Bacillus velezensis</i> KH-08 over previously reported cellulolytic strains. This exceptional performance underscores its potential as a highly promising candidate for industrial-scale bioconversion, with direct implications for bioethanol production, biomass valorization, and waste to energy technologies.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 5","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145197524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiodegradationPub Date : 2025-09-29DOI: 10.1007/s10532-025-10192-8
Natalia Zielonka, Adam Ząbek, Karolina Anna Mielko-Niziałek, Małgorzata Brzezińska-Rodak, Ewa Żymańczyk-Duda, Piotr Młynarz, Magdalena Klimek-Ochab
{"title":"Metabolic fingerprinting to elucidate the biodegradation of phosphonoacetic acid and its impact on Penicillium metabolism","authors":"Natalia Zielonka, Adam Ząbek, Karolina Anna Mielko-Niziałek, Małgorzata Brzezińska-Rodak, Ewa Żymańczyk-Duda, Piotr Młynarz, Magdalena Klimek-Ochab","doi":"10.1007/s10532-025-10192-8","DOIUrl":"10.1007/s10532-025-10192-8","url":null,"abstract":"<div><p>The application of metabolomic analysis to the study of fungal cell physiology provides a valuable means of elucidating the metabolic diversity of fungi. This study aims to identify metabolites that distinguish the metabolism of moulds based on the phosphorus source used in the culture medium, either inorganic phosphate (Pi) or phosphonoacetic acid (PA). A targeted metabolomics approach, using LC–MS combined with chemometric tools, facilitated the identification of metabolic differences between three fungal strains of the <i>Penicillium</i> genus: <i>Penicillium commune</i>, <i>Penicillium crustosum</i> S2, and <i>Penicillium funiculosum</i> S4. The availability of PA in the medium enables <i>P. commune</i> to synthesize compounds that stimulate cellular responses to unfavorable environmental conditions, while activating pathways involving precursors of secondary metabolites. Comparative analysis of cell-free extracts from <i>P. commune</i> and <i>P. funiculosum</i> S4 cultured on Pi-containing medium revealed increased levels of metabolites, including tyrosine, tryptophan, glutathione, and ethyl-3-hydroxybutyrate, in both fungal extracts. Furthermore, analysis of the cell-free extracts obtained from biomass grown on a medium containing PA showed similarities between <i>P. commune</i> and <i>P. crustosum</i> S2, as well as between the two wild strains. From these results, it can be concluded that the metabolic strategies of <i>P. commune</i> and <i>P. funiculosum</i> S4 are similar when Pi is the sole phosphorus source, whereas the use of phosphonate reveals common characteristics between the <i>P. commune</i> strain and <i>P. crustosum</i> S2. These observations allowed the identification of fungal biomarkers and provided insights into the mechanisms of metabolic response to changing environmental conditions.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 5","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12479703/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145190523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiodegradationPub Date : 2025-09-29DOI: 10.1007/s10532-025-10190-w
Mohamed Kishk, Rita Rahmeh, Fahad Asiri, Hajar Karam, Kawther Al-Muhanna, Ahmad Ben Hejji, Anisha Shajan, Sultan M. Al-Salem
{"title":"Substrate-specific microbial community shifts during mesophilic biodegradation of polymers in compost amended soil","authors":"Mohamed Kishk, Rita Rahmeh, Fahad Asiri, Hajar Karam, Kawther Al-Muhanna, Ahmad Ben Hejji, Anisha Shajan, Sultan M. Al-Salem","doi":"10.1007/s10532-025-10190-w","DOIUrl":"10.1007/s10532-025-10190-w","url":null,"abstract":"<div><p>Plastics are widely utilized across various industries, but their persistent accumulation in the environment has become a major ecological concern. Biodegradable alternatives offer a potential solution to plastic pollution; however, their degradation behavior under environmentally relevant conditions remains underexplored. This study evaluates the aerobic biodegradation of four polymer materials: starch, commercial thermoplastic starch of polyester origin (TPS1), linear low-density polyethylene (LLDPE), and a co-polyester thermoplastic starch (TPS2), over 180 days at 25 °C in a compost-soil matrix using the testing protocols of ASTM D5988-18 for carbon dioxide (CO<sub>2</sub>) evolution. Microbial community dynamics were profiled using 16S rRNA and ITS2 amplicon sequencing. TPS2 reached complete mineralization (~ 100%) in 28 days, followed by starch at 71.1% by day 180. TPS1 showed partial mineralization of 38.6%, while LLDPE showed minimal mineralization (21.9%) as expected. Alpha diversity revealed higher bacterial richness in starch treatments and a marked reduction in fungal diversity in TPS1 and LLDPE. Differential abundance testing revealed significant microbial shifts between treatments. Linear discriminant analysis Effect Size (LEfSe) identified polymer-specific microbial biomarkers, including <i>Paenibacillus</i> and <i>Botryotrichum</i> for starch, <i>Acrophialophora</i> and <i>Mycothermus</i> for TPS2, and the <i>Mycobacterium</i> for LLDPE. Subgroup 10 Acidobacteria was uniquely enriched in TPS2-treated samples. These taxa reflect substrate-driven microbial selection. Coupling CO<sub>2</sub> mineralization with microbial profiling offers a practical framework to evaluate polymer biodegradability and guide the design of soil-degradable bioplastics. Overall, these findings demonstrate that polymer composition significantly influences microbial community structure and mineralization performance under mesophilic conditions.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 5","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10532-025-10190-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145184455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiodegradationPub Date : 2025-09-28DOI: 10.1007/s10532-025-10189-3
Loveleen Kaur, Saurabh Bhatti, Dinesh Raj Modi
{"title":"Degradation of phenoxyalkanoic acid herbicides by isolated bacterial strain LKDC4 Pseudomonas aeruginosa","authors":"Loveleen Kaur, Saurabh Bhatti, Dinesh Raj Modi","doi":"10.1007/s10532-025-10189-3","DOIUrl":"10.1007/s10532-025-10189-3","url":null,"abstract":"<div><p>Phenoxyalkanoic acid herbicides are widely used in agricultural lands to kill the weeds in crop fields and have a very detrimental effect on soil’s natural fertility and its microbiome. Bacterial culture isolated from these lands in the presence of herbicides group 2,4-Dichlorophenoxyacetic acid (2,4-D) and 2-Methyl-4-chlorophenoxy acetic acid (MCPA) belongs to plant growth hormone auxin. Strain LKDC4 <i>Pseudomonas aeruginosa</i> exposed to both herbicides at a range of concentrations 300 mg/L, 500 mg/L and 700 mg/L for 5 days without any enrichment culture, providing 2,4-D and MCPA as a carbon source for survival. LKDC4 shows a maximum number of cell growth in 2,4-D herbicide at the lowest concentration 300 mg/L (1.35 mM) comparatively with the highest concentration 700 mg/L (3.16 mM) of optical density 0.85 and 0.78 at 600 nm, respectively. At the same time, this strain shows a similar number of cell growth at all three concentrations 300 mg/L, 500 mg/L, and 700 mg/L of 1.49 mM, 2.49 mM, and 3.48 mM respectively of optical density 0.90 at 600 nm. The degradation efficiency of the <i>Pseudomonas aeruginosa</i> LKDC4 was 70 to 80% of 2,4-D herbicide when the growth medium contained 0.2% glucose as the only carbon source after 5 days at optimum conditions. The degradation of MCPA was 100% at 300 mg/L and 700 mg/L, while 81% degradation at 500 mg/L after 5 days of incubation at optimum conditions. <i>P. aeruginosa</i> can degrade both herbicides and survive well in their presence, making it a tolerant microbial strain.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 5","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145184446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiodegradationPub Date : 2025-09-22DOI: 10.1007/s10532-025-10187-5
Dinesh Parida, Kanika Kiran, Rimjhim Sangtani, Regina Nogueira, Kiran Bala
{"title":"Polyethylene terephthalate (PET) biodeterioration by microalgae: preliminary insights from the screening of indigenous species","authors":"Dinesh Parida, Kanika Kiran, Rimjhim Sangtani, Regina Nogueira, Kiran Bala","doi":"10.1007/s10532-025-10187-5","DOIUrl":"10.1007/s10532-025-10187-5","url":null,"abstract":"<div><p>Polyethylene terephthalate (PET) is a huge part of consumer products such as beverage bottles, packaging materials, and textile fibres. It contributes significantly to persistent plastic pollution in freshwater ecosystems. This study explores the biodeterioration potential of seven indigenous freshwater microalgae isolated from water bodies near Indore, India, for sustainable PET degradation without chemical pre-treatment. Algal strains were incubated with PET granules for 20 days under controlled laboratory conditions (pH-7.2, temp. 27 ± 3 °C, light intensity of 40.5 µmol/m<sup>2</sup>/s, and a 12:12 h light–dark period). The average specific growth rate (μ) of the microalgal strains was 0.07 ± 0.01 μ/day. Among these, <i>Asterarcys quadricellulare</i> exhibited the highest deterioration efficiency, achieving a weight loss of 10%, followed by <i>Scenedesmus</i> sp. with a weight loss of 6%. Scanning electron microscopy (SEM), ATR-FTIR spectroscopy, and X-ray diffraction (XRD) analysis revealed notable cracks, chemical alterations, and reduction in crystallinity, respectively. Transmittance intensity of the characteristics FTIR spectra at 1715 cm<sup>−1</sup> demonstrated a sharp increase, indicating the formation of carbonyl groups. The reduction in the crystallinity of PET granules was consistently demonstrated by both FTIR and XRD analyses, confirming structural deformities induced by the algal strains. Biochemical analysis revealed that strains <i>A. quadricellulare</i>, <i>C. proboscideum</i>, and <i>P. daitoensi</i><b><i>s</i></b> exhibited a significant increase in lipid, protein, and carbohydrate concentration compared to the control. This study highlights the efficacy of unicellular microalgal strains in mitigating PET pollution in aquatic systems while enabling biomass valorisation for other sustainable applications.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 5","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145100801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiodegradationPub Date : 2025-09-22DOI: 10.1007/s10532-025-10184-8
Kajal Saini, Smita S. Kumar, Vivek Kumar, Somvir Bajar
{"title":"Demonstrated role of sulfate-reducing bacterial consortia in anaerobic paracetamol biodegradation","authors":"Kajal Saini, Smita S. Kumar, Vivek Kumar, Somvir Bajar","doi":"10.1007/s10532-025-10184-8","DOIUrl":"10.1007/s10532-025-10184-8","url":null,"abstract":"<div><p>The escalating global production and usage of paracetamol (C<sub>8</sub>H<sub>9</sub>NO<sub>2</sub>), a widely administered analgesic and antipyretic pharmaceutical, has led to its ubiquitous presence in environmental matrices, including surface waters, municipal wastewater, and even potable water sources. Owing to its persistence and bioaccumulative potential, paracetamol poses a significant ecotoxicological threat, particularly through trophic transfer in aquatic ecosystems. Conventional wastewater treatment methods often fall short in completely eliminating such micropollutants. In this context, bioremediation offers a promising, sustainable, and cost-effective alternative for pharmaceutical remediation. This study investigates the anaerobic degradation potential of two sulfate-reducing bacterial consortia, designated Consortium I and Consortium II, isolated from Okhla landfill leachate and enriched with distinct Postgate media formulations. Paracetamol was introduced at varying concentrations (50–500 mg/L), with and without supplementation of an auxiliary carbon source, sodium lactate. Metagenomic profiling via 16S rRNA sequencing revealed that Consortium I was primarily composed of <i>Clostridium</i> (40.1%) and <i>Acidipropionibacterium</i> (31.2%), whereas Consortium II exhibited a dominant presence of <i>Clostridium</i> (80.3%) and <i>Bacillus</i> (7.99%). Consortium II exhibited superior degradation kinetics, achieving complete removal of 500 mg/L paracetamol in 48 h under lactate-free conditions. Conversely, the presence of sodium lactate significantly attenuated degradation efficiency, suggesting substrate competition and metabolic preference. Gas chromatography-mass spectrometry (GC-MS) identified 4-aminophenol and hydroquinone as transient intermediates, supporting a proposed anaerobic degradation pathway for paracetamol. These findings underscore the potential of native sulfate reducing bacterial consortia in the bioremediation of contaminants and provide mechanistic insight into anaerobic paracetamol degradation, offering a viable strategy for enhanced treatment efficacy of contaminated waste streams.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 5","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145110609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiodegradationPub Date : 2025-09-20DOI: 10.1007/s10532-025-10185-7
George Obinna Akuaka, Hazzeman Haris, Kamarul Zaman Zarkasi, Go Furusawa, Nyok-Sean Lau, Vine Nwabuisi Madukpe, Baderul Amin Abdul Hamid
{"title":"Seasonal dynamics of microbial diversity and functional potential in active sanitary landfill baseliner microbiomes","authors":"George Obinna Akuaka, Hazzeman Haris, Kamarul Zaman Zarkasi, Go Furusawa, Nyok-Sean Lau, Vine Nwabuisi Madukpe, Baderul Amin Abdul Hamid","doi":"10.1007/s10532-025-10185-7","DOIUrl":"10.1007/s10532-025-10185-7","url":null,"abstract":"<div><p>Sanitary landfilling remains a cost-effective waste management strategy, employing engineered liners and leachate collection systems to mitigate environmental pollution. However, long-term degradation of compacted clay baseliners (CCLs) poses risks to environmental safety and groundwater quality. This study investigated seasonal and habitat-specific microbial communities within CCLs and leachate from the Pulau Burung Sanitary Landfill, Pinang, Malaysia, utilizing 16S rRNA gene amplicon sequencing and functional prediction via PICRUSt2. Triplicate samples were collected from leachate and baseliner layers (0–30 cm depth) during both rainy and dry seasons, alongside assessments of physicochemical properties and permeability. Significant seasonal differences (p < 0.05) were observed in the physicochemical profiles of leachate and baseliner samples. Baseliner microbiomes exhibited greater compositional stability and smaller beta-diversity shifts compared to the more dynamic leachate communities. Alpha diversity increased in both matrices during the dry season, although changes in baseliner richness were not statistically significant (p > 0.05). Microbial community shifts were primarily driven by seasonal variations in environmental parameters. Core phyla shared across both habitats included <i>Pseudomonadota</i> (31.15–45.88%), <i>Bacillota</i> (8.58–31.15%), <i>Actinobacteriota</i> (6.22–19.58%), <i>Acidobacteriota</i> (0.16–15.85%), <i>Chloroflexota</i> (0.85–13.84%), and <i>Bacteroidota</i> (1.38–12.74%). Additional phyla such as <i>Patescibacteria</i> (0.77–2.06%), <i>Cyanobacteria</i> (0.12–6.16%), <i>Desulfobacterota</i> (0.77–5.38%), and <i>Verrucomicrobiota</i> (0.59–2.33%) showed matrix-specific enrichment. Functional prediction revealed distinct enzyme profiles and metabolic pathway enrichment. Anaerobic genera such as <i>Geobacter</i>, <i>Desulfuromonas</i>, <i>Desulfuromusa</i>, <i>Pseudopelobacter</i>, <i>Desulfotomaculum</i>, <i>Clostridium</i>, <i>Desulfitobacterium</i>, <i>Telmatospirillum</i>, and <i>Dethiobacter</i> were associated with redox cycling and mineral-transforming processes, suggesting potential contributions to increased clay porosity and reduced structural integrity. These findings demonstrate the ecological and functional complexity of landfill microbiomes and their potential role in compromising barrier performance. The study recommends routine monitoring of microbial functional genes and the development of biogeochemically resilient clay blends or in situ biobarriers to enhance long-term containment efficacy.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 5","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10532-025-10185-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145090373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiodegradationPub Date : 2025-09-19DOI: 10.1007/s10532-025-10183-9
Selvakumar Santhosh, Jayaraman Narenkumar, Kayeen Vadakkan, M. S. Nandini, Aruliah Rajasekar, Rajaram Rajamohan
{"title":"Enterobacter hormaechei mediated biodegradation of PET: a sustainable approach to plastic waste","authors":"Selvakumar Santhosh, Jayaraman Narenkumar, Kayeen Vadakkan, M. S. Nandini, Aruliah Rajasekar, Rajaram Rajamohan","doi":"10.1007/s10532-025-10183-9","DOIUrl":"10.1007/s10532-025-10183-9","url":null,"abstract":"<div><p>This study investigates the biodegradation of polymer polyethylene terephthalate (PET) by <i>Enterobacter hormaechei,</i> which was isolated from the Chennai coastal region, India. The degradation was characterized using Fourier transform infrared spectroscopy (FT-IR), X-Ray Diffraction (XRD), Raman spectroscopy, Particle Size analyzer, and Field emission scanning electron microscopy (FESEM) coupled with EDX. FT-IR revealed the formation of C–O (ether group) and the C–H (methylene group) bonds. Raman spectroscopy confirmed the emergence of a new formation group at the 1216 cm<sup>−1</sup> Raman shift. XRD analysis revealed reduced crystallinity and structural alterations in PET, indicating bacterial–mediated modification of the polymer structure. FESEM analysis revealed significant morphological changes, accompanied by a 60.0% reduction in carbon content, corresponding to 65.5% PET degradation. In conclusion, <i>Enterobacter hormaechei</i> can efficiently utilise PET as a carbon source and highlighting its potential in polymer degradation.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 5","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145090498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}