Adharsh Rajasekar, Cailin Zhao, Suowei Wu, Raphinos Tackmore Murava, Eyram Norgbey, Armstrong Ighodalo Omoregie, Charles K. S. Moy
{"title":"芽孢杆菌和单胞菌通过微生物诱导的碳酸盐沉淀去除高浓度锌、镉和镍重金属","authors":"Adharsh Rajasekar, Cailin Zhao, Suowei Wu, Raphinos Tackmore Murava, Eyram Norgbey, Armstrong Ighodalo Omoregie, Charles K. S. Moy","doi":"10.1007/s10532-025-10131-7","DOIUrl":null,"url":null,"abstract":"<div><p>Heavy metal pollution in urban freshwater, driven by anthropogenic activities, poses significant risks to aquatic ecosystems and human health due to its toxicity and persistence. Recently, urease-producing bacteria have gained attention for their ability to remove heavy metals through microbial-induced carbonate precipitation (MICP). In this study, eight urease-producing bacteria were exposed to individual solutions of zinc (Zn<sup>2+</sup>), cadmium (Cd<sup>2+</sup>), and nickel (Ni<sup>2+</sup>) at concentrations ranging from 0 to 6 mM to assess their resistance. Three strains—<i>Bacillus subtilis</i> HMZC1 (B2), <i>Bacillus sp.</i> HMZCSW (B6), and <i>Comamonas sp.</i> HMZC (B11)—survived at 4 mM and 6 mM, while most others could not tolerate 4 mM. Their urea-degrading ability was tested at different pH levels, identifying an optimal pH of 7 for MICP. Heavy metal carbonate precipitation experiments at 4 mM and 6 mM revealed that all three strains achieved > 93% removal of Zn<sup>2+</sup>, Ni<sup>2+</sup>, and Cd<sup>2+</sup> within 72 h. <i>Comamonas sp.</i> HMZC exhibited the highest efficiency, achieving > 95% removal of certain heavy metals at 6 mM. Statistical analysis using one-way ANOVA revealed significant differences (p < 0.05) in heavy metal removal efficiencies among the strains for certain treatment conditions (Cd<sup>2+</sup> and Zn<sup>2+</sup> at 4 mM), although not all comparisons reached statistical significance. Scanning Electron Microscopy and X-ray Diffraction confirmed the morphology and composition of the precipitated heavy metal carbonates. Our findings demonstrate that urease-producing bacteria can effectively immobilize multiple heavy metals, highlighting the MICP process as a practical and sustainable biological approach for ecological restoration and wastewater treatment.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10532-025-10131-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Removal of high concentrations of zinc, cadmium, and nickel heavy metals by Bacillus and Comamonas through microbially induced carbonate precipitation\",\"authors\":\"Adharsh Rajasekar, Cailin Zhao, Suowei Wu, Raphinos Tackmore Murava, Eyram Norgbey, Armstrong Ighodalo Omoregie, Charles K. S. Moy\",\"doi\":\"10.1007/s10532-025-10131-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Heavy metal pollution in urban freshwater, driven by anthropogenic activities, poses significant risks to aquatic ecosystems and human health due to its toxicity and persistence. Recently, urease-producing bacteria have gained attention for their ability to remove heavy metals through microbial-induced carbonate precipitation (MICP). In this study, eight urease-producing bacteria were exposed to individual solutions of zinc (Zn<sup>2+</sup>), cadmium (Cd<sup>2+</sup>), and nickel (Ni<sup>2+</sup>) at concentrations ranging from 0 to 6 mM to assess their resistance. Three strains—<i>Bacillus subtilis</i> HMZC1 (B2), <i>Bacillus sp.</i> HMZCSW (B6), and <i>Comamonas sp.</i> HMZC (B11)—survived at 4 mM and 6 mM, while most others could not tolerate 4 mM. Their urea-degrading ability was tested at different pH levels, identifying an optimal pH of 7 for MICP. Heavy metal carbonate precipitation experiments at 4 mM and 6 mM revealed that all three strains achieved > 93% removal of Zn<sup>2+</sup>, Ni<sup>2+</sup>, and Cd<sup>2+</sup> within 72 h. <i>Comamonas sp.</i> HMZC exhibited the highest efficiency, achieving > 95% removal of certain heavy metals at 6 mM. Statistical analysis using one-way ANOVA revealed significant differences (p < 0.05) in heavy metal removal efficiencies among the strains for certain treatment conditions (Cd<sup>2+</sup> and Zn<sup>2+</sup> at 4 mM), although not all comparisons reached statistical significance. Scanning Electron Microscopy and X-ray Diffraction confirmed the morphology and composition of the precipitated heavy metal carbonates. Our findings demonstrate that urease-producing bacteria can effectively immobilize multiple heavy metals, highlighting the MICP process as a practical and sustainable biological approach for ecological restoration and wastewater treatment.</p></div>\",\"PeriodicalId\":486,\"journal\":{\"name\":\"Biodegradation\",\"volume\":\"36 3\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10532-025-10131-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodegradation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10532-025-10131-7\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-025-10131-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Removal of high concentrations of zinc, cadmium, and nickel heavy metals by Bacillus and Comamonas through microbially induced carbonate precipitation
Heavy metal pollution in urban freshwater, driven by anthropogenic activities, poses significant risks to aquatic ecosystems and human health due to its toxicity and persistence. Recently, urease-producing bacteria have gained attention for their ability to remove heavy metals through microbial-induced carbonate precipitation (MICP). In this study, eight urease-producing bacteria were exposed to individual solutions of zinc (Zn2+), cadmium (Cd2+), and nickel (Ni2+) at concentrations ranging from 0 to 6 mM to assess their resistance. Three strains—Bacillus subtilis HMZC1 (B2), Bacillus sp. HMZCSW (B6), and Comamonas sp. HMZC (B11)—survived at 4 mM and 6 mM, while most others could not tolerate 4 mM. Their urea-degrading ability was tested at different pH levels, identifying an optimal pH of 7 for MICP. Heavy metal carbonate precipitation experiments at 4 mM and 6 mM revealed that all three strains achieved > 93% removal of Zn2+, Ni2+, and Cd2+ within 72 h. Comamonas sp. HMZC exhibited the highest efficiency, achieving > 95% removal of certain heavy metals at 6 mM. Statistical analysis using one-way ANOVA revealed significant differences (p < 0.05) in heavy metal removal efficiencies among the strains for certain treatment conditions (Cd2+ and Zn2+ at 4 mM), although not all comparisons reached statistical significance. Scanning Electron Microscopy and X-ray Diffraction confirmed the morphology and composition of the precipitated heavy metal carbonates. Our findings demonstrate that urease-producing bacteria can effectively immobilize multiple heavy metals, highlighting the MICP process as a practical and sustainable biological approach for ecological restoration and wastewater treatment.
期刊介绍:
Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms.
Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.