Adharsh Rajasekar, Cailin Zhao, Suowei Wu, Raphinos Tackmore Murava, Eyram Norgbey, Armstrong Ighodalo Omoregie, Charles K. S. Moy
{"title":"Removal of high concentrations of zinc, cadmium, and nickel heavy metals by Bacillus and Comamonas through microbially induced carbonate precipitation","authors":"Adharsh Rajasekar, Cailin Zhao, Suowei Wu, Raphinos Tackmore Murava, Eyram Norgbey, Armstrong Ighodalo Omoregie, Charles K. S. Moy","doi":"10.1007/s10532-025-10131-7","DOIUrl":null,"url":null,"abstract":"<div><p>Heavy metal pollution in urban freshwater, driven by anthropogenic activities, poses significant risks to aquatic ecosystems and human health due to its toxicity and persistence. Recently, urease-producing bacteria have gained attention for their ability to remove heavy metals through microbial-induced carbonate precipitation (MICP). In this study, eight urease-producing bacteria were exposed to individual solutions of zinc (Zn<sup>2+</sup>), cadmium (Cd<sup>2+</sup>), and nickel (Ni<sup>2+</sup>) at concentrations ranging from 0 to 6 mM to assess their resistance. Three strains—<i>Bacillus subtilis</i> HMZC1 (B2), <i>Bacillus sp.</i> HMZCSW (B6), and <i>Comamonas sp.</i> HMZC (B11)—survived at 4 mM and 6 mM, while most others could not tolerate 4 mM. Their urea-degrading ability was tested at different pH levels, identifying an optimal pH of 7 for MICP. Heavy metal carbonate precipitation experiments at 4 mM and 6 mM revealed that all three strains achieved > 93% removal of Zn<sup>2+</sup>, Ni<sup>2+</sup>, and Cd<sup>2+</sup> within 72 h. <i>Comamonas sp.</i> HMZC exhibited the highest efficiency, achieving > 95% removal of certain heavy metals at 6 mM. Statistical analysis using one-way ANOVA revealed significant differences (p < 0.05) in heavy metal removal efficiencies among the strains for certain treatment conditions (Cd<sup>2+</sup> and Zn<sup>2+</sup> at 4 mM), although not all comparisons reached statistical significance. Scanning Electron Microscopy and X-ray Diffraction confirmed the morphology and composition of the precipitated heavy metal carbonates. Our findings demonstrate that urease-producing bacteria can effectively immobilize multiple heavy metals, highlighting the MICP process as a practical and sustainable biological approach for ecological restoration and wastewater treatment.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10532-025-10131-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-025-10131-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Heavy metal pollution in urban freshwater, driven by anthropogenic activities, poses significant risks to aquatic ecosystems and human health due to its toxicity and persistence. Recently, urease-producing bacteria have gained attention for their ability to remove heavy metals through microbial-induced carbonate precipitation (MICP). In this study, eight urease-producing bacteria were exposed to individual solutions of zinc (Zn2+), cadmium (Cd2+), and nickel (Ni2+) at concentrations ranging from 0 to 6 mM to assess their resistance. Three strains—Bacillus subtilis HMZC1 (B2), Bacillus sp. HMZCSW (B6), and Comamonas sp. HMZC (B11)—survived at 4 mM and 6 mM, while most others could not tolerate 4 mM. Their urea-degrading ability was tested at different pH levels, identifying an optimal pH of 7 for MICP. Heavy metal carbonate precipitation experiments at 4 mM and 6 mM revealed that all three strains achieved > 93% removal of Zn2+, Ni2+, and Cd2+ within 72 h. Comamonas sp. HMZC exhibited the highest efficiency, achieving > 95% removal of certain heavy metals at 6 mM. Statistical analysis using one-way ANOVA revealed significant differences (p < 0.05) in heavy metal removal efficiencies among the strains for certain treatment conditions (Cd2+ and Zn2+ at 4 mM), although not all comparisons reached statistical significance. Scanning Electron Microscopy and X-ray Diffraction confirmed the morphology and composition of the precipitated heavy metal carbonates. Our findings demonstrate that urease-producing bacteria can effectively immobilize multiple heavy metals, highlighting the MICP process as a practical and sustainable biological approach for ecological restoration and wastewater treatment.
期刊介绍:
Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms.
Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.