{"title":"Skeletal phenotypes and molecular mechanisms in aging mice.","authors":"Qiao Guan, Yuan Zhang, Zhi-Kun Wang, Xiao-Hua Liu, Jun Zou, Ling-Li Zhang","doi":"10.24272/j.issn.2095-8137.2023.397","DOIUrl":"10.24272/j.issn.2095-8137.2023.397","url":null,"abstract":"<p><p>Aging is an inevitable physiological process, often accompanied by age-related bone loss and subsequent bone-related diseases that pose serious health risks. Research on skeletal diseases caused by aging in humans is challenging due to lengthy study durations, difficulties in sampling, regional variability, and substantial investment. Consequently, mice are preferred for such studies due to their similar motor system structure and function to humans, ease of handling and care, low cost, and short generation time. In this review, we present a comprehensive overview of the characteristics, limitations, applicability, bone phenotypes, and treatment methods in naturally aging mice and prematurely aging mouse models (including <i>SAMP6</i>, <i>POLG</i> mutant, <i>LMNA</i>, <i>SIRT6</i>, <i>ZMPSTE24</i>, <i>TFAM</i>, <i>ERCC1</i>, <i>WERNER</i>, and <i>KL/KL</i>-deficient mice). We also summarize the molecular mechanisms of these aging mouse models, including cellular DNA damage response, senescence-related secretory phenotype, telomere shortening, oxidative stress, bone marrow mesenchymal stem cell (BMSC) abnormalities, and mitochondrial dysfunction. Overall, this review aims to enhance our understanding of the pathogenesis of aging-related bone diseases.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"45 4","pages":"724-746"},"PeriodicalIF":4.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298674/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141421447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zoological ResearchPub Date : 2024-07-18DOI: 10.24272/j.issn.2095-8137.2023.363
Qunxian Wang, Yanshuang Jiang, Zijun Meng, Xiangjun Dong, Dongjie Hu, Liangye Ji, Weihui Zhou, Weihong Song
{"title":"SIL1 improves cognitive impairment in APP23/PS45 mice by regulating amyloid precursor protein processing and Aβ generation.","authors":"Qunxian Wang, Yanshuang Jiang, Zijun Meng, Xiangjun Dong, Dongjie Hu, Liangye Ji, Weihui Zhou, Weihong Song","doi":"10.24272/j.issn.2095-8137.2023.363","DOIUrl":"10.24272/j.issn.2095-8137.2023.363","url":null,"abstract":"<p><p>SIL1, an endoplasmic reticulum (ER)-resident protein, is reported to play a protective role in Alzheimer's disease (AD). However, the effect of SIL1 on amyloid precursor protein (APP) processing remains unclear. In this study, the role of SIL1 in APP processing was explored both <i>in vitro</i> and <i>in vivo</i>. In the <i>in vitro</i> experiment, SIL1 was either overexpressed or knocked down in cells stably expressing the human Swedish mutant APP695. In the <i>in vivo</i> experiment, AAV-SIL1-EGFP or AAV-EGFP was microinjected into APP23/PS45 mice and their wild-type littermates. Western blotting (WB), immunohistochemistry, RNA sequencing (RNA-seq), and behavioral experiments were performed to evaluate the relevant parameters. Results indicated that SIL1 expression decreased in APP23/PS45 mice. Overexpression of SIL1 significantly decreased the protein levels of APP, presenilin-1 (PS1), and C-terminal fragments (CTFs) of APP <i>in vivo</i> and <i>in vitro</i>. Conversely, knockdown of SIL1 increased the protein levels of APP, β-site APP cleavage enzyme 1 (BACE1), PS1, and CTFs, as well as APP mRNA expression in 2EB2 cells. Furthermore, SIL1 overexpression reduced the number of senile plaques in APP23/PS45 mice. Importantly, Y-maze and Morris Water maze tests demonstrated that SIL1 overexpression improved cognitive impairment in APP23/PS45 mice. These findings indicate that SIL1 improves cognitive impairment in APP23/PS45 mice by inhibiting APP amyloidogenic processing and suggest that SIL1 is a potential therapeutic target for AD by modulating APP processing.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"45 4","pages":"845-856"},"PeriodicalIF":4.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298678/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Genetically modified pigs with CD163 point mutation are resistant to HP-PRRSV infection.","authors":"Ying Liu, Lin Yang, Hong-Yong Xiang, Ming Niu, Jia-Cheng Deng, Xue-Yuan Li, Wen-Jie Hao, Hong-Sheng Ou-Yang, Tong-Yu Liu, Xiao-Chun Tang, Da-Xin Pang, Hong-Ming Yuan","doi":"10.24272/j.issn.2095-8137.2024.090","DOIUrl":"10.24272/j.issn.2095-8137.2024.090","url":null,"abstract":"<p><p>Porcine reproductive and respiratory syndrome (PRRS) is a globally prevalent contagious disease caused by the positive-strand RNA PRRS virus (PRRSV), resulting in substantial economic losses in the swine industry. Modifying the CD163 SRCR5 domain, either through deletion or substitution, can eff1ectively confer resistance to PRRSV infection in pigs. However, large fragment modifications in pigs inevitably raise concerns about potential adverse effects on growth performance. Reducing the impact of genetic modifications on normal physiological functions is a promising direction for developing PRRSV-resistant pigs. In the current study, we identified a specific functional amino acid in CD163 that influences PRRSV proliferation. Viral infection experiments conducted on Marc145 and PK-15 <sup>CD163</sup> cells illustrated that the mE535G or corresponding pE529G mutations markedly inhibited highly pathogenic PRRSV (HP-PRRSV) proliferation by preventing viral binding and entry. Furthermore, individual viral challenge tests revealed that pigs with the E529G mutation had viral loads two orders of magnitude lower than wild-type (WT) pigs, confirming effective resistance to HP-PRRSV. Examination of the physiological indicators and scavenger function of CD163 verified no significant differences between the WT and E529G pigs. These findings suggest that E529G pigs can be used for breeding PRRSV-resistant pigs, providing novel insights into controlling future PRRSV outbreaks.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"45 4","pages":"833-844"},"PeriodicalIF":4.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298667/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zoological ResearchPub Date : 2024-07-18DOI: 10.24272/j.issn.2095-8137.2024.158
Jin-Bo Xiong, Hao-Nan Sha, Jiong Chen
{"title":"Updated roles of the gut microbiota in exploring shrimp etiology, polymicrobial pathogens, and disease incidence.","authors":"Jin-Bo Xiong, Hao-Nan Sha, Jiong Chen","doi":"10.24272/j.issn.2095-8137.2024.158","DOIUrl":"10.24272/j.issn.2095-8137.2024.158","url":null,"abstract":"<p><p><i>Litopenaeus vannamei</i> is the most extensively cultured shrimp species globally, recognized for its scale, production, and economic value. However, its aquaculture is plagued by frequent disease outbreaks, resulting in rapid and massive mortality. etiological research often lags behind the emergence of new diseases, leaving the causal agents of some shrimp diseases unidentified and leading to nomenclature based on symptomatic presentations, especially in cases involving co- and polymicrobial pathogens. Comprehensive data on shrimp disease statuses remain limited. In this review, we summarize current knowledge on shrimp diseases and their effects on the gut microbiome. Furthermore, we also propose a workflow integrating primary colonizers, \"driver\" taxa in gut networks from healthy to diseased states, disease-discriminatory taxa, and virulence genes to identify potential polymicrobial pathogens. We examine both abiotic and biotic factors (e.g., external and internal sources and specific-disease effects) that influence shrimp gut microbiota, with an emphasis on the \"holobiome\" concept and common features of gut microbiota response to diverse diseases. After excluding the effects of confounding factors, we provide a diagnosis model for quantitatively predicting shrimp disease incidence using disease common-discriminatory taxa, irrespective of the causal agents. Due to the conservation of functional genes used in designing specific primers, we propose a practical strategy applying qPCR-assayed abundances of disease common-discriminatory functional genes. This review updates the roles of the gut microbiota in exploring shrimp etiology, polymicrobial pathogens, and disease incidence, offering a refined perspective for advancing shrimp aquaculture health management.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"45 4","pages":"910-923"},"PeriodicalIF":4.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298683/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141635051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zoological ResearchPub Date : 2024-07-18DOI: 10.24272/j.issn.2095-8137.2024.058
Kun Wu, Danqi Qin, Yang Qian, Haoxuan Liu
{"title":"A new era of mutation rate analyses: Concepts and methods.","authors":"Kun Wu, Danqi Qin, Yang Qian, Haoxuan Liu","doi":"10.24272/j.issn.2095-8137.2024.058","DOIUrl":"10.24272/j.issn.2095-8137.2024.058","url":null,"abstract":"<p><p>The mutation rate is a pivotal biological characteristic, intricately governed by natural selection and historically garnering considerable attention. Recent advances in high-throughput sequencing and analytical methodologies have profoundly transformed our understanding in this domain, ushering in an unprecedented era of mutation rate research. This paper aims to provide a comprehensive overview of the key concepts and methodologies frequently employed in the study of mutation rates. It examines various types of mutations, explores the evolutionary dynamics and associated theories, and synthesizes both classical and contemporary hypotheses. Furthermore, this review comprehensively explores recent advances in understanding germline and somatic mutations in animals and offers an overview of experimental methodologies, mutational patterns, molecular mechanisms, and driving forces influencing variations in mutation rates across species and tissues. Finally, it proposes several potential research directions and pressing questions for future investigations.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"45 4","pages":"767-780"},"PeriodicalIF":4.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298668/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141421440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the evolutionary trail of MagRs.","authors":"Jing Zhang, Yafei Chang, Peng Zhang, Yanqi Zhang, Mengke Wei, Chenyang Han, Shun Wang, Hui-Meng Lu, Tiantian Cai, Can Xie","doi":"10.24272/j.issn.2095-8137.2024.074","DOIUrl":"10.24272/j.issn.2095-8137.2024.074","url":null,"abstract":"<p><p>Magnetic sense, or termed magnetoreception, has evolved in a broad range of taxa within the animal kingdom to facilitate orientation and navigation. MagRs, highly conserved A-type iron-sulfur proteins, are widely distributed across all phyla and play essential roles in both magnetoreception and iron-sulfur cluster biogenesis. However, the evolutionary origins and functional diversification of MagRs from their prokaryotic ancestor remain unclear. In this study, MagR sequences from 131 species, ranging from bacteria to humans, were selected for analysis, with 23 representative sequences covering species from prokaryotes to Mollusca, Arthropoda, Osteichthyes, Reptilia, Aves, and mammals chosen for protein expression and purification. Biochemical studies revealed a gradual increase in total iron content in MagRs during evolution. Three types of MagRs were identified, each with distinct iron and/or iron-sulfur cluster binding capacity and protein stability, indicating continuous expansion of the functional roles of MagRs during speciation and evolution. This evolutionary biochemical study provides valuable insights into how evolution shapes the physical and chemical properties of biological molecules such as MagRs and how these properties influence the evolutionary trajectories of MagRs.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"45 4","pages":"821-830"},"PeriodicalIF":4.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298677/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141421445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study of tree shrew biology and models: A booming and prosperous field for biomedical research.","authors":"Yong-Gang Yao, Li Lu, Rong-Jun Ni, Rui Bi, Ceshi Chen, Jia-Qi Chen, Eberhard Fuchs, Marina Gorbatyuk, Hao Lei, Hongli Li, Chunyu Liu, Long-Bao Lv, Kyoko Tsukiyama-Kohara, Michinori Kohara, Claudia Perez-Cruz, Gregor Rainer, Bao-Ci Shan, Fang Shen, An-Zhou Tang, Jing Wang, Wei Xia, Xueshan Xia, Ling Xu, Dandan Yu, Feng Zhang, Ping Zheng, Yong-Tang Zheng, Jumin Zhou, Jiang-Ning Zhou","doi":"10.24272/j.issn.2095-8137.2024.199","DOIUrl":"10.24272/j.issn.2095-8137.2024.199","url":null,"abstract":"<p><p>The tree shrew ( <i>Tupaia belangeri</i>) has long been proposed as a suitable alternative to non-human primates (NHPs) in biomedical and laboratory research due to its close evolutionary relationship with primates. In recent years, significant advances have facilitated tree shrew studies, including the determination of the tree shrew genome, genetic manipulation using spermatogonial stem cells, viral vector-mediated gene delivery, and mapping of the tree shrew brain atlas. However, the limited availability of tree shrews globally remains a substantial challenge in the field. Additionally, determining the key questions best answered using tree shrews constitutes another difficulty. Tree shrew models have historically been used to study hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, myopia, and psychosocial stress-induced depression, with more recent studies focusing on developing animal models for infectious and neurodegenerative diseases. Despite these efforts, the impact of tree shrew models has not yet matched that of rodent or NHP models in biomedical research. This review summarizes the prominent advancements in tree shrew research and reflects on the key biological questions addressed using this model. We emphasize that intensive dedication and robust international collaboration are essential for achieving breakthroughs in tree shrew studies. The use of tree shrews as a unique resource is expected to gain considerable attention with the application of advanced techniques and the development of viable animal models, meeting the increasing demands of life science and biomedical research.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"45 4","pages":"877-909"},"PeriodicalIF":4.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298672/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zoological ResearchPub Date : 2024-07-18DOI: 10.24272/j.issn.2095-8137.2024.039
Yu Fu, Jing-Ru Nie, Peng Shang, Bo Zhang, Da-Wei Yan, Xin Hao, Hao Zhang
{"title":"Tumor necrosis factor α deficiency promotes myogenesis and muscle regeneration.","authors":"Yu Fu, Jing-Ru Nie, Peng Shang, Bo Zhang, Da-Wei Yan, Xin Hao, Hao Zhang","doi":"10.24272/j.issn.2095-8137.2024.039","DOIUrl":"10.24272/j.issn.2095-8137.2024.039","url":null,"abstract":"<p><p>Tumor necrosis factor α (TNFα) exhibits diverse biological functions; however, its regulatory roles in myogenesis are not fully understood. In the present study, we explored the function of <i>TNFα</i> in myoblast proliferation, differentiation, migration, and myotube fusion in primary myoblasts and C2C12 cells. To this end, we constructed <i>TNFα</i> muscle-conditional knockout ( <i>TNFα</i>-CKO) mice and compared them with <i>flox</i> mice to assess the effects of <i>TNFα</i> knockout on skeletal muscles. Results indicated that <i>TNFα</i>-CKO mice displayed phenotypes such as accelerated muscle development, enhanced regenerative capacity, and improved exercise endurance compared to <i>flox</i> mice, with no significant differences observed in major visceral organs or skeletal structure. Using label-free proteomic analysis, we found that <i>TNFα</i>-CKO altered the distribution of several muscle development-related proteins, such as Hira, Casz1, Casp7, Arhgap10, Gas1, Diaph1, Map3k20, Cfl2, and Igf2, in the nucleus and cytoplasm. Gene set enrichment analysis (GSEA) further revealed that <i>TNFα</i> deficiency resulted in positive enrichment in oxidative phosphorylation and MyoD targets and negative enrichment in JAK-STAT signaling. These findings suggest that <i>TNFα</i>-CKO positively regulates muscle growth and development, possibly via these newly identified targets and pathways.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"45 4","pages":"951-960"},"PeriodicalIF":4.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298682/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141635050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zoological ResearchPub Date : 2024-05-18DOI: 10.24272/j.issn.2095-8137.2023.302
Gao-Lin Qiu, Li-Jun Peng, Peng Wang, Zhi-Lai Yang, Ji-Qian Zhang, Hu Liu, Xiao-Na Zhu, Jin Rao, Xue-Sheng Liu
{"title":"<i>In vivo</i> imaging reveals a synchronized correlation among neurotransmitter dynamics during propofol and sevoflurane anesthesia.","authors":"Gao-Lin Qiu, Li-Jun Peng, Peng Wang, Zhi-Lai Yang, Ji-Qian Zhang, Hu Liu, Xiao-Na Zhu, Jin Rao, Xue-Sheng Liu","doi":"10.24272/j.issn.2095-8137.2023.302","DOIUrl":"10.24272/j.issn.2095-8137.2023.302","url":null,"abstract":"<p><p>General anesthesia is widely applied in clinical practice. However, the precise mechanism of loss of consciousness induced by general anesthetics remains unknown. Here, we measured the dynamics of five neurotransmitters, including γ-aminobutyric acid, glutamate, norepinephrine, acetylcholine, and dopamine, in the medial prefrontal cortex and primary visual cortex of C57BL/6 mice through <i>in vivo</i> fiber photometry and genetically encoded neurotransmitter sensors under anesthesia to reveal the mechanism of general anesthesia from a neurotransmitter perspective. Results revealed that the concentrations of γ-aminobutyric acid, glutamate, norepinephrine, and acetylcholine increased in the cortex during propofol-induced loss of consciousness. Dopamine levels did not change following the hypnotic dose of propofol but increased significantly following surgical doses of propofol anesthesia. Notably, the concentrations of the five neurotransmitters generally decreased during sevoflurane-induced loss of consciousness. Furthermore, the neurotransmitter dynamic networks were not synchronized in the non-anesthesia groups but were highly synchronized in the anesthetic groups. These findings suggest that neurotransmitter dynamic network synchronization may cause anesthetic-induced loss of consciousness.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"45 3","pages":"679-690"},"PeriodicalIF":4.0,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188615/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141065075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}