RNA editing generates mRNA isoforms with distinct stabilities that may expand the thermal tolerance of mRNA and proteins in Mytilus species.

IF 4.7 1区 生物学 Q1 ZOOLOGY
Ming-Ling Liao, Ya-Jie Zhu, Xiao-Lu Zhu, George N Somero, Yun-Wei Dong
{"title":"RNA editing generates mRNA isoforms with distinct stabilities that may expand the thermal tolerance of mRNA and proteins in <i>Mytilus</i> species.","authors":"Ming-Ling Liao, Ya-Jie Zhu, Xiao-Lu Zhu, George N Somero, Yun-Wei Dong","doi":"10.24272/j.issn.2095-8137.2024.383","DOIUrl":null,"url":null,"abstract":"<p><p>Ectothermic organisms may expand their thermal tolerance by producing multiple protein isoforms with differing thermal sensitivities. While such isoforms commonly originate from allelic variation at a single locus (allozymes) or from gene duplication that gives rise to paralogs with distinct thermal responses, this study investigated mRNA editing as an alternative, post-transcriptional mechanism for generating mRNA variants. Cytosolic malate dehydrogenase (cMDH) was examined in foot tissue of two congeners of the marine mussel genus <i>Mytilus</i>, which occupy different thermal environments. Multiple editing events were detected within the mRNA coding region in both species. Editing sites were species-specific, with no shared positions identified. In <i>M. coruscus</i>, editing occurred at 117, 123, 135, 190, 195, 204, 279, and 444, while in <i>M. galloprovincialis</i>, editing was detected at 216 and 597. Each species exhibited multiple edited mRNA variants, and these isoforms were associated with differential protein expression. These findings suggest that mRNA editing may contribute an additional layer of molecular variation. The generation of diverse mRNA isoforms from a single DNA coding sequence may enhance enzymatic flexibility across temperature ranges, supporting eurythermal physiological performance and mitigating thermal stress. Moreover, the presence of multiple edited transcripts within individual organisms raises important caveats about the limitations of approaches that deduce amino acid sequences or estimate adaptive variation solely from genomic data.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"46 3","pages":"527-537"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361899/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.24272/j.issn.2095-8137.2024.383","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ectothermic organisms may expand their thermal tolerance by producing multiple protein isoforms with differing thermal sensitivities. While such isoforms commonly originate from allelic variation at a single locus (allozymes) or from gene duplication that gives rise to paralogs with distinct thermal responses, this study investigated mRNA editing as an alternative, post-transcriptional mechanism for generating mRNA variants. Cytosolic malate dehydrogenase (cMDH) was examined in foot tissue of two congeners of the marine mussel genus Mytilus, which occupy different thermal environments. Multiple editing events were detected within the mRNA coding region in both species. Editing sites were species-specific, with no shared positions identified. In M. coruscus, editing occurred at 117, 123, 135, 190, 195, 204, 279, and 444, while in M. galloprovincialis, editing was detected at 216 and 597. Each species exhibited multiple edited mRNA variants, and these isoforms were associated with differential protein expression. These findings suggest that mRNA editing may contribute an additional layer of molecular variation. The generation of diverse mRNA isoforms from a single DNA coding sequence may enhance enzymatic flexibility across temperature ranges, supporting eurythermal physiological performance and mitigating thermal stress. Moreover, the presence of multiple edited transcripts within individual organisms raises important caveats about the limitations of approaches that deduce amino acid sequences or estimate adaptive variation solely from genomic data.

Abstract Image

Abstract Image

Abstract Image

RNA编辑产生的mRNA同种异构体具有明显的稳定性,可能会扩大贻贝螺物种mRNA和蛋白质的耐热性。
恒温生物可以通过产生多种具有不同热敏性的蛋白质异构体来扩大其热耐受性。虽然这种同种异构体通常起源于单个位点(同工酶)的等位基因变异或基因复制,从而产生具有不同热反应的类似物,但本研究将mRNA编辑作为产生mRNA变异的另一种转录后机制进行了研究。研究了两种不同热环境的贻贝(Mytilus)足部组织中苹果酸脱氢酶(cMDH)的表达。在两个物种的mRNA编码区都检测到多个编辑事件。编辑位点是物种特有的,没有确定的共享位置。在M. coruscus中,编辑位点为117、123、135、190、195、204、279和444,而在M. galloprovincialis中,编辑位点为216和597。每个物种都表现出多个编辑的mRNA变体,这些亚型与差异蛋白表达相关。这些发现表明,mRNA编辑可能会增加一层分子变异。从单一DNA编码序列产生不同的mRNA同种异构体可能增强酶在温度范围内的灵活性,支持热生理性能和减轻热应激。此外,单个生物体中存在多个编辑转录本,这对仅从基因组数据推断氨基酸序列或估计适应性变异的方法的局限性提出了重要的警告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Zoological Research
Zoological Research Medicine-General Medicine
CiteScore
7.60
自引率
10.20%
发文量
1937
审稿时长
8 weeks
期刊介绍: Established in 1980, Zoological Research (ZR) is a bimonthly publication produced by Kunming Institute of Zoology, the Chinese Academy of Sciences, and the China Zoological Society. It publishes peer-reviewed original research article/review/report/note/letter to the editor/editorial in English on Primates and Animal Models, Conservation and Utilization of Animal Resources, and Animal Diversity and Evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信