Zoological ResearchPub Date : 2025-09-18DOI: 10.24272/j.issn.2095-8137.2025.211
Ze-Qiong Ru, Yu-Tong Wu, Chong-Yu Yang, Ya-Ting Yang, Ya-Jie Li, Min Liu, Ying Peng, Yu-Liu Yang, Jun-Yuan Wang, Qiu-Ye Jia, Yuan-Sheng Li, Zhe Fu, Mei-Feng Yang, Jing Tang, Yan Fan, Cheng-Xing Liu, Wen-Rou Su, Nai-Xin Liu, Li He, Ying Wang, Xin-Wang Yang
{"title":"Ultra-short cyclic peptide Cy <sub>RL-QN15</sub> acts as a TLR4 antagonist to expedite oral ulcer healing.","authors":"Ze-Qiong Ru, Yu-Tong Wu, Chong-Yu Yang, Ya-Ting Yang, Ya-Jie Li, Min Liu, Ying Peng, Yu-Liu Yang, Jun-Yuan Wang, Qiu-Ye Jia, Yuan-Sheng Li, Zhe Fu, Mei-Feng Yang, Jing Tang, Yan Fan, Cheng-Xing Liu, Wen-Rou Su, Nai-Xin Liu, Li He, Ying Wang, Xin-Wang Yang","doi":"10.24272/j.issn.2095-8137.2025.211","DOIUrl":"https://doi.org/10.24272/j.issn.2095-8137.2025.211","url":null,"abstract":"<p><p>Oral ulcers (OUs) are among the most common lesions of the oral mucosa, typically associated with pain and burning sensations, and remain clinically challenging due to the scarcity of effective treatment options. Cy <sub>RL-QN15</sub>, a novel ultra-short cyclic heptapeptide recently shown to promote skin repair, diabetic wound healing, and follicle neogenesis, was evaluated for its therapeutic potential in mucosal repair. Using a rat OU model and a primary oral epithelial cell inflammation model, Cy <sub>RL-QN15</sub> significantly accelerated wound closure through coordinated modulation of immune-epithelial crosstalk, including suppression of inflammatory cytokine release from macrophages and neutrophils, reduction of pro-inflammatory factor secretion by oral epithelial cells, and enhancement of their proliferation and migration. Mechanistic studies employing alanine scanning mutagenesis and microscale thermophoresis revealed that Cy <sub>RL-QN15</sub> directly interacted with Toll-like receptor 4 (TLR4) via a methionine-dependent binding interface (K <sub>d</sub>=2.64 µmol/L), thereby inhibiting downstream MyD88/NF-κB signaling. As the first ultra-short cyclic heptapeptide identified to antagonize TLR4, Cy <sub>RL-QN15</sub> represents a mechanistically distinct immunomodulatory scaffold that restores mucosal homeostasis and offers a promising therapeutic candidate for TLR4-based OU intervention.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"46 5","pages":"1187-1202"},"PeriodicalIF":4.7,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145187294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zoological ResearchPub Date : 2025-09-18DOI: 10.24272/j.issn.2095-8137.2025.092
Wei Wu, Xiao-Hang Zhang, Fei-Fei Du, Zhong-Ru Gu, Li Hu, Jun-Feng Chen, Zhen-Zhen Lin, Sheng-Kai Pan, Xiang-Jiang Zhan
{"title":"Acute hypoxia suppresses blood glycolysis in saker falcons ( <i>Falco cherrug</i>) via NR3C1-mediated repression of <i>HK1</i>: Evidence from hematological and epigenomic profiling.","authors":"Wei Wu, Xiao-Hang Zhang, Fei-Fei Du, Zhong-Ru Gu, Li Hu, Jun-Feng Chen, Zhen-Zhen Lin, Sheng-Kai Pan, Xiang-Jiang Zhan","doi":"10.24272/j.issn.2095-8137.2025.092","DOIUrl":"10.24272/j.issn.2095-8137.2025.092","url":null,"abstract":"<p><p>Ongoing climate change is driving high-altitude bird species to occupy even higher elevations, yet physiological and regulatory responses enabling these transitions remain poorly understood. This study investigated acute hypoxic responses in saker falcons ( <i>Falco cherrug</i>) inhabiting the Qinghai-Xizang Plateau by exposing individuals to simulated altitudes of 5 000-6 000 m above sea level (a.s.l.), exceeding their typical elevation range (approximately 4 300 m a.s.l.). GPS tracking data indicated that juvenile falcons maintained comparable activity levels across 4 000-5 000 m and 5 000-6 000 m a.s.l. ranges. However, pre-fledging individuals subjected to 6 000 m hypoxia for three days exhibited marked increases in hemoglobin concentration and blood glucose. Transcriptomic profiling revealed significant suppression of glycolytic activity, notably characterized by reduced expression of hexokinase 1 ( <i>HK1</i>), a key enzymatic gene involved in the glycolytic pathway. ATAC-seq further identified enhanced chromatin accessibility within the <i>HK1</i> locus under hypoxia, revealing two conserved cis-regulatory elements recognized by the transcription factor NR3C1 in the hypoxia-treated group. <i>NR3C1</i> expression was negatively correlated with <i>HK1</i>. Notably, both elements were unique and evolutionarily conserved in avian taxa, suggesting a potential role in hypoxia resilience among highland birds. These findings provide mechanistic insights into the molecular and physiological strategies employed by sakers to tolerate acute hypoxic stress and inform conservation efforts for high-altitude bird species on the Qinghai-Xizang Plateau and other alpine ecosystems facing accelerating climate change.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"46 5","pages":"1165-1174"},"PeriodicalIF":4.7,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145187055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zoological ResearchPub Date : 2025-09-18DOI: 10.24272/j.issn.2095-8137.2025.127
Yi-Yun Zhu, Li-Mei Zhao, Xin-Yi Jia, Guo-Jian Liao, Yi-Peng Wang
{"title":"Amphibians as a source of bioactive antioxidant peptides: Emerging insights and therapeutic potential.","authors":"Yi-Yun Zhu, Li-Mei Zhao, Xin-Yi Jia, Guo-Jian Liao, Yi-Peng Wang","doi":"10.24272/j.issn.2095-8137.2025.127","DOIUrl":"https://doi.org/10.24272/j.issn.2095-8137.2025.127","url":null,"abstract":"<p><p>Oxidative stress arises from disruption of the balance between reactive oxygen species (ROS) production and detoxification and constitutes a fundamental driver of diverse pathological diseases. Skin photoaging is a well-recognized example, primarily driven by chronic ultraviolet (UV) exposure and marked by progressive structural and functional deterioration. UV-induced ROS accelerate macromolecular degradation and impair epidermal and dermal barrier integrity, highlighting the urgent need for effective antioxidant interventions. Antioxidant peptides (AOPs), whether naturally occurring or synthetically engineered, have shown considerable potential in mitigating ROS-induced cellular damage. Amphibians, which possess highly permeable skin and are continuously challenged by fluctuating environmental conditions, represent a rich source of bioactive peptides with potent antioxidant properties. In particular, AOPs isolated from amphibian skin secretions demonstrate notable efficacy in ROS scavenging and mitigation of oxidative damage, offering promising candidates for anti-photoaging therapies. This review provides an integrated overview of ROS generation and signaling, the molecular mechanisms linking oxidative stress to skin photoaging, and the emerging biomedical potential of amphibian-derived AOPs. Deeper mechanistic insight into their structure and function is expected to accelerate the development of novel peptide-based interventions for photoaging and other oxidative stress-associated dermatological disorders.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"46 5","pages":"1219-1243"},"PeriodicalIF":4.7,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145187235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zoological ResearchPub Date : 2025-09-18DOI: 10.24272/j.issn.2095-8137.2025.018
Yi-Han Liu, Bei Li, Yuan-Xing Zhang, Sang Ho Choi, Shuai Shao, Qi-Yao Wang
{"title":"Coordinated inhibition of M1 macrophage polarization by FIT2-mediated lipid droplet biosynthesis and FABP5.","authors":"Yi-Han Liu, Bei Li, Yuan-Xing Zhang, Sang Ho Choi, Shuai Shao, Qi-Yao Wang","doi":"10.24272/j.issn.2095-8137.2025.018","DOIUrl":"https://doi.org/10.24272/j.issn.2095-8137.2025.018","url":null,"abstract":"<p><p>Lipid droplets (LDs) serve as dynamic organelles central to host immune response and bacterial infection resistance by recruiting multiple proteins and peptides with established antiviral and antibacterial properties. Although macrophage polarization is integral to both innate immunity and lipid homeostasis, the regulatory influence of LDs on this process remains unclear. In this study, augmentation of LDs via oleic acid (OA) treatment attenuated M1 polarization in RAW264.7 macrophages. Given that LD budding is mediated by fat storage-inducing transmembrane protein 2 (FIT2) encoded by <i>FITM2</i>, transcriptomic analysis following <i>FITM2</i> knockdown revealed suppressed expression of fatty acid-binding protein 5 (FABP5), a lipid-binding protein that further modulated LD abundance. Both FIT2 and FABP5 were found to regulate LD content and collectively contributed to inhibition of M1 macrophage polarization. This shift impaired macrophage capacity to mount effective antibacterial responses. These findings identify a coordinated role for LDs and FABP5 in modulating M1 macrophage polarization, establishing a mechanistic link between lipid metabolism and innate host defense against bacterial infection.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"46 5","pages":"1175-1186"},"PeriodicalIF":4.7,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145187238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zoological ResearchPub Date : 2025-09-18DOI: 10.24272/j.issn.2095-8137.2025.077
Han Zhang, Ming-Tian Pan, Yu-Xuan Li, Xiao-Jiang Li, Xiang-Yu Guo, Da-Jian He
{"title":"Understanding Tau pathology: Insights from animal models.","authors":"Han Zhang, Ming-Tian Pan, Yu-Xuan Li, Xiao-Jiang Li, Xiang-Yu Guo, Da-Jian He","doi":"10.24272/j.issn.2095-8137.2025.077","DOIUrl":"https://doi.org/10.24272/j.issn.2095-8137.2025.077","url":null,"abstract":"<p><p>Tauopathies represent a class of neurodegenerative diseases (NDs), including Alzheimer's disease (AD), progressive supranuclear palsy (PSP), Pick's disease (PiD), and corticobasal degeneration (CBD), defined by intracellular accumulation of misfolded and hyperphosphorylated tau protein. The pathogenic cascade involves hyperphosphorylation, conformational changes, and aggregation into neurofibrillary tangles (NFTs), which are spatially and functionally linked to neuronal dysfunction, synaptic loss, and progressive cognitive and motor decline. To elucidate tau-mediated mechanisms, diverse transgenic rodent models expressing wild-type or mutant forms of human TAU have been generated. Although these models have advanced understanding of tau aggregation and propagation, tau-targeting therapies have failed to produce clinical benefits, raising concerns about the precise mechanism underlying tauopathies and the fidelity of animal models in evaluating therapeutic targets. This review systematically examines the neuropathological and behavioral phenotypes across established rodent and non-human primate (NHP) tauopathy models, highlighting mechanistic insights into tau-driven pathology. The advantages, limitations, and translational barriers of each model are critically evaluated to inform the development of more predictive preclinical platforms for therapeutic discovery.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"46 5","pages":"1244-1258"},"PeriodicalIF":4.7,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145187304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zoological ResearchPub Date : 2025-09-18DOI: 10.24272/j.issn.2095-8137.2025.303
James Mwangi, Dawit Adisu Tadese, Yi Wang, Demeke Asmamaw, Min Yang, Brenda B Michira, Mehwish Khalid, Zi-Yi Wang, Qiu-Min Lu, Ren Lai
{"title":"Integrating a cationic backbone with a hydrophobic core: A structure-function strategy for designing self-assembling antimicrobial peptides with enhanced activity.","authors":"James Mwangi, Dawit Adisu Tadese, Yi Wang, Demeke Asmamaw, Min Yang, Brenda B Michira, Mehwish Khalid, Zi-Yi Wang, Qiu-Min Lu, Ren Lai","doi":"10.24272/j.issn.2095-8137.2025.303","DOIUrl":"https://doi.org/10.24272/j.issn.2095-8137.2025.303","url":null,"abstract":"<p><p>Effective countermeasures against multidrug-resistant nosocomial pathogens, such as carbapenem-resistant <i>Klebsiella pneumoniae</i> and methicillin-resistant <i>Staphylococcus aureus</i> (MRSA), require the development of innovative antimicrobial strategies. This study presents a structure-function approach to antimicrobial peptide (AMP) design through the strategic integration of a cationic backbone with a hydrophobic core. This dual-domain architecture enables robust hydrophobic and electrostatic interactions, promoting spontaneous self-assembly and efficient membrane engagement. The lead peptide, Tryptolycin (TRPY), formed stable, monodisperse nanoparticles and demonstrated broad-spectrum bactericidal activity, with minimum inhibitory concentrations ≤1 µM against multiple strains of MRSA and <i>K. pneumoniae</i>, while exerting minimal cytotoxicity toward mammalian cells. TRPY achieved rapid bacterial elimination, eradicating 99.9% of both planktonic and persister populations within minutes. Mechanistic investigations revealed that TRPY induced membrane permeabilization, promoted reactive oxygen species (ROS) production, and inhibited biofilm formation. In murine infection models, TRPY effectively eradicated established infections, reducing bacterial burden across target organs by 3- to 5-fold without significant cytotoxicity at therapeutic concentrations. Collectively, these findings establish TRPY as a promising therapeutic agent for clinical translation in the treatment of refractory bacterial infections.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"46 5","pages":"1203-1218"},"PeriodicalIF":4.7,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145187281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zoological ResearchPub Date : 2025-09-18DOI: 10.24272/j.issn.2095-8137.2024.372
Hong-Zhou Guo, Ming-Yue Wang, Di Zhang, Jing-Lin Zhang, Ye-Wen Zhou, Ke-Mian Gou, Jia-Li Liu, Zong-Ping Liu, Sheng Cui
{"title":"CK1α in Sertoli cells is essential for testicular development and spermatogenesis in mice.","authors":"Hong-Zhou Guo, Ming-Yue Wang, Di Zhang, Jing-Lin Zhang, Ye-Wen Zhou, Ke-Mian Gou, Jia-Li Liu, Zong-Ping Liu, Sheng Cui","doi":"10.24272/j.issn.2095-8137.2024.372","DOIUrl":"https://doi.org/10.24272/j.issn.2095-8137.2024.372","url":null,"abstract":"<p><p>Male infertility constitutes a major global public health concern, with the underlying etiology remaining unidentified in nearly half of the diagnosed cases. Protein kinase CK1α (CK1α) functions as a pivotal regulator of cell cycle progression, pre-mRNA processing, and spliceosome-associated pathways through interactions with specific splicing factors. Comprehensive analyses revealed CK1α expression in both germ cells and somatic cells of mouse testes, implicating its involvement in spermatogenic regulation. However, the physiological roles and mechanistic basis of CK1α function in Sertoli cells remain unclear. In this study, CK1α was highly expressed in Sertoli cells, and conditional knockout of CK1α in murine Sertoli cells induced profound testicular atrophy and complete infertility. This phenotype was characterized by rapid depletion of Sertoli cells and spermatogenic dysfunction. Subsequent analyses demonstrated that CK1α regulated the fate determination of fetal and neonatal Sertoli cells in mice. At the molecular level, CK1α promoted Sertoli cell survival through interaction with the splicing factor ZRSR1 to modulate apoptosis. Collectively, these findings establish CK1α as a key regulator of alternative splicing and male reproduction, providing critical insights into the molecular mechanisms underlying testicular development and reproductive function.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"46 5","pages":"1121-1136"},"PeriodicalIF":4.7,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145187310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zoological ResearchPub Date : 2025-09-18DOI: 10.24272/j.issn.2095-8137.2025.307
Ting-Fang Zhu, Zi-Yue Zhao, Chen-Jie Fei, Shi-Chang Shen, Jian-Zhong Shao, Li Nie, Jiong Chen
{"title":"LEAP2 triggers retromer-mediated membrane trafficking of MOSPD2 to promote chemotaxis in teleost monocytes/macrophages.","authors":"Ting-Fang Zhu, Zi-Yue Zhao, Chen-Jie Fei, Shi-Chang Shen, Jian-Zhong Shao, Li Nie, Jiong Chen","doi":"10.24272/j.issn.2095-8137.2025.307","DOIUrl":"https://doi.org/10.24272/j.issn.2095-8137.2025.307","url":null,"abstract":"<p><p>Liver-expressed antimicrobial peptide 2 (LEAP2) is a key regulator of innate immune defense in teleosts, yet the molecular basis of its chemotactic function remains largely unidentified. <i>Boleophthalmus pectinirostris</i> MOSPD2 ( <i>Bp</i>MOSPD2) was previously identified as a candidate receptor for <i>Bp</i>LEAP2 in monocytes/macrophages (MO/MΦ). In the present study, <i>Bp</i>LEAP2 stimulation was found to trigger a retromer-dependent intracellular trafficking program essential for <i>Bp</i>MOSPD2-mediated chemotaxis. Exposure to <i>Bp</i>LEAP2 significantly enhanced <i>Bp</i>MO/MΦ migration and promoted the accumulation of <i>Bp</i>MOSPD2 at the plasma membrane. Subcellular fractionation and immunofluorescence analyses revealed that <i>Bp</i>MOSPD2 translocated from the endoplasmic reticulum (ER) to early endosomes upon <i>Bp</i>LEAP2 stimulation, followed by redistribution to the cell surface. Blockade of ER export or knockdown of core retromer subunits ( <i>Bp</i>VPS35, <i>Bp</i>VPS26, or <i>Bp</i>VPS29) abolished membrane localization and attenuated <i>Bp</i>LEAP2-induced migration. Co-immunoprecipitation combined with mass spectrometry confirmed direct binding between <i>Bp</i>MOSPD2 and <i>Bp</i>VPS35, while domain-mapping indicated that this interaction was not exclusively dependent on MSP or CRAL-TRIO domains. Depletion of individual retromer components led to retention of <i>Bp</i>MOSPD2 in early endosomes, establishing the necessity of the retromer complex for receptor recycling. Functionally, disruption of this complex eliminated the pro-migratory activity of <i>Bp</i>LEAP2 on <i>Bp</i>MO/MΦ. These findings identify the retromer complex as a critical regulator of <i>Bp</i>MOSPD2 trafficking and uncover a previously unrecognized mechanism through which <i>Bp</i>LEAP2 promotes MO/MΦ migration in teleosts.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"46 5","pages":"1153-1164"},"PeriodicalIF":4.7,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145187244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zoological ResearchPub Date : 2025-09-18DOI: 10.24272/j.issn.2095-8137.2025.050
Lu-Tong Zhang, Teng Zhang, Xiang-Rong Song, Madaniyati Mie-Lie, Yi-Hao Li, Lei Gao, Gong-She Yang, Gui-Yan Chu
{"title":"CircSHOC2 regulates steroid hormone synthesis in ovarian granulosa cells through the mir-130b-5p/ASH1L pathway.","authors":"Lu-Tong Zhang, Teng Zhang, Xiang-Rong Song, Madaniyati Mie-Lie, Yi-Hao Li, Lei Gao, Gong-She Yang, Gui-Yan Chu","doi":"10.24272/j.issn.2095-8137.2025.050","DOIUrl":"https://doi.org/10.24272/j.issn.2095-8137.2025.050","url":null,"abstract":"<p><p>Estrus represents a critical phase in the porcine reproductive cycle and relies on functional ovarian development and coordinated steroidogenesis. Granulosa cells (GCs) mediate these processes by secreting estradiol (E <sub>2</sub>) and progesterone (P <sub>4</sub>), which are essential for follicular maturation and ovulatory competence. While circular RNAs (circRNAs) have been implicated in steroid hormone synthesis, their involvement in the regulation of gilt estrous remains unclear. In this study, circRNA sequencing was performed on ovarian tissues of estrus (ES) and non-estrus (NES) gilts, resulting in the identification of a novel circRNA, termed circular SHOC2 leucine rich repeat scaffold protein (circSHOC2), which exhibited marked up-regulation in ES ovaries. Functional assays demonstrated that circSHOC2 overexpression enhanced E <sub>2</sub> and P <sub>4</sub> synthesis and increased the protein levels of key steroidogenic enzymes. Mechanistic investigation revealed that circSHOC2 sponges miR-130b-5p. Silencing miR-130b-5p significantly enhanced E <sub>2</sub> and P <sub>4</sub> production, along with the up-regulation of steroidogenic proteins. Additionally, miR-130b-5p targeted ASH1-like histone lysine methyltransferase (ASH1L), while its overexpression significantly inhibited ASH1L. Cotransfection experiments revealed that ASH1L mitigated the inhibitory effects of miR-130b-5p on E <sub>2</sub> and P <sub>4</sub> synthesis in GCs. These findings establish a regulatory axis in which circSHOC2 modulates steroidogenic capacity in porcine GCs via the miR-130b-5p/ASH1L pathway, offering mechanistic insight into the molecular basis of gilt estrus and providing potential targets to enhance reproductive efficiency.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"46 5","pages":"1108-1120"},"PeriodicalIF":4.7,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145187301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zoological ResearchPub Date : 2025-09-18DOI: 10.24272/j.issn.2095-8137.2024.477
Heng-Qing Huan, Yu-Bing Ding, Zi-Ang Qian, Jie Ji, Xian-Hui Ning, Shao-Wu Yin, Kai Zhang
{"title":"Interleukin-22 functions to alleviate hypoxia-induced intestinal inflammation by modulating pro- and anti-inflammatory factors in <i>Pelteobagrus fulvidraco</i>.","authors":"Heng-Qing Huan, Yu-Bing Ding, Zi-Ang Qian, Jie Ji, Xian-Hui Ning, Shao-Wu Yin, Kai Zhang","doi":"10.24272/j.issn.2095-8137.2024.477","DOIUrl":"https://doi.org/10.24272/j.issn.2095-8137.2024.477","url":null,"abstract":"<p><p>Intestinal inflammation is a common challenge in intensive aquaculture, yet its pathogenesis remains unclear. While interleukin 22 (IL-22) is recognized as a critical regulator of cellular homeostasis during inflammation in higher vertebrates, its roles in fish are not well understood. This study established hypoxia-induced models in intestinal tissues and primary intestinal epithelial cells of yellow catfish to investigate the involvement of IL-22 in maintaining intestinal homeostasis. Results revealed that <i>Pelteobagrus fulvidraco</i> IL-22 ( <i>Pf</i>_ <i>IL-22</i>) was abundantly expressed in mucosal tissues, with the highest levels in the gill and intestine. Hypoxia induced pronounced intestinal injury, characterized by loosening of the lamina propria and extensive vacuolization, while activating hypoxia-inducible factor (HIF) signaling and markedly up-regulating IL-22 expression. IL-22 levels peaked at 24 h post-hypoxia, suggesting a role in early immune responses. Recombinant <i>Pf</i>_IL-22 also induced transcription of pro-inflammatory mediators, including IL-1β and tumor necrosis factor α (TNF-α), in primary intestinal epithelial cells, indicating a dual regulatory function in balancing protection and inflammation. Mechanistic analyses revealed that HIF-1α directly interacted with a hypoxia response element within the IL-22 promoter to drive transcription, as confirmed by dual-luciferase assays, electrophoretic mobility-shift assays, and HIF-1α knockdown. Silencing <i>Pf_IL-22</i> significantly suppressed Th17 cell differentiation pathways, demonstrating its role in shaping downstream immune responses. These findings establish the HIF-1α/IL-22 axis as a key regulatory pathway modulating immune responses and alleviating intestinal inflammation, providing a basis for developing IL-22-targeted immunotherapies and selective breeding strategies in aquaculture.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"46 5","pages":"1137-1152"},"PeriodicalIF":4.7,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145187313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}