{"title":"Features and mechanisms of long-lived <i>Myotis</i> somatic fibroblasts in response to DNA replication stress.","authors":"Xiao-Yan Huang, Xiu-Yun Liu, Wei Wang, Gao-Jing Liu, You-Long Zhu, Xiao Wen, Kai-Qin Li, Bo Zhao","doi":"10.24272/j.issn.2095-8137.2024.373","DOIUrl":"https://doi.org/10.24272/j.issn.2095-8137.2024.373","url":null,"abstract":"<p><p>The DNA replication stress (RS) response is crucial for maintaining cellular homeostasis and promoting physiological longevity. However, the mechanisms by which long-lived species, such as bats, regulate RS to maintain genomic stability remain unclear. Also, recent studies have uncovered noncanonical roles of ribosome-associated factors in maintaining genomic stability. In this study, somatic skin fibroblasts from the long-lived big-footed bat ( <i>Myotis pilosus</i>) were examined, with results showing that bat cells exhibited enhanced RS tolerance compared to mouse cells. Comparative transcriptome analysis under RS conditions revealed pronounced species-specific transcriptional differences, including robust up-regulation of ribosome biogenesis genes in bat cells and a markedly reduced activation of the P53 signaling pathway. These features emphasize a distinct homeostatic strategy in bat cells. Nuclear fragile X mental retardation-interacting protein 1 ( <i>Nufip1</i>), a ribosome-associated factor highly expressed in bat fibroblasts, was identified as a potential integrator of ribosomal and P53 signaling via its association with ribosomal protein S27-like (Rps27l). These findings provide direct cellular and molecular evidence for a noncanonical RS response in bats, highlighting a deeper understanding of the biological characteristics and genomic maintenance mechanisms of long-lived species.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"46 3","pages":"709-721"},"PeriodicalIF":4.0,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144129258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Insights into the role of Fsh signaling in ovarian differentiation of <i>chorionic gonadotropin α</i> ( <i>cgα</i>)-deficient zebrafish.","authors":"Chuang Shi, Yuqing Zhang, Yao Lu, Qiyong Lou, Guohui Shang, Xuyan Peng, Xiangyan Dai, Xia Jin, Jiangyan He, Gang Zhai, Zhan Yin","doi":"10.24272/j.issn.2095-8137.2024.397","DOIUrl":"https://doi.org/10.24272/j.issn.2095-8137.2024.397","url":null,"abstract":"<p><p>Chorionic gonadotropin α (Cgα) functions as the shared subunit for thyroid-stimulating hormone subunit β (Tshβ), luteinizing hormone subunit β (Lhβ), and follicle-stimulating hormone subunit β (Fshβ). While these β-subunits have been extensively studied using effective gene knockout models in zebrafish, the biological role of Cgα remains elusive. In this study, <i>cgα</i>-deficient zebrafish generated via transcription activator-like effector nucleases (TALENs) exhibited viability but displayed pronounced developmental abnormalities, including growth retardation, hyperpigmentation, reduced thyroxine (T4) levels, and defective anterior swim bladder inflation during juvenile stages. In adults, cgα deficiency led to disrupted gonadal development, impaired secondary sex characteristics (SSCs), and severely impacted reproductive behavior in both female and male fish. Notably, both testicular and ovarian differentiation were observed in <i>cgα</i>-deficient fish and <i>lhβ</i> <sup><i>-</i>/-</sup> ; <i>fshβ</i> <sup>-/-</sup> mutants. Gonadal sex differentiation in <i>cgα</i>-deficient zebrafish exhibited a pronounced shift toward testicular fate upon additional disruption of <i>fshβ</i> ( <i>cgα</i> <sup>-/-</sup>; <i>fshβ</i> <sup>-/-</sup>), marked by elevated anti-Müllerian hormone ( <i>amh</i>) expression, or following loss of follicle-stimulating hormone receptor ( <i>fshr</i>) ( <i>cgα</i> <sup>-/-</sup>; <i>fshr</i> <sup>-/-</sup>). <i>In vitro</i> assays in Chinese hamster ovary (CHO) cells revealed increased cAMP response element (CRE) promoter activity following transfection with constructs encoding Fshr, Fshβ/Fshr, or Cgα/Fshβ/Fshr. Collectively, the phenotypes observed in <i>cgα</i>-deficient fish recapitulate those of thyrotropin- and gonadotropin-disrupted models, highlighting the essential role of Cgα in thyroid and gonadal function. Importantly, these findings uncover the role of Fsh signaling in maintaining proper ovarian differentiation in zebrafish, including Cgα-independent Fshβ activity and the constitutive functionality of Fshr.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"46 3","pages":"695-708"},"PeriodicalIF":4.0,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144129260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evolutionary balance between genomic conservation and coral reef adaptation in the yellow boxfish ( <i>Ostracion cubicus</i>).","authors":"Shui-Mu Hu, Zhi-Xiong Zhou, Jun-Yi Yang, Zhou Jiang, Fei Pu, Qing-Ming Qu, Tao Zhou, Peng Xu","doi":"10.24272/j.issn.2095-8137.2024.388","DOIUrl":"https://doi.org/10.24272/j.issn.2095-8137.2024.388","url":null,"abstract":"<p><p>The yellow boxfish ( <i>Ostracion cubicus</i>) exhibits a combination of derived morphological traits specialized for coral reef environments and ancestral characteristics, including a fused dermal plate. Contradictory evolutionary evidence hinders true classification of <i>O. cubicus</i>. To clarify its evolutionary position within Tetraodontiformes, a chromosome-level genome assembly was generated, representing the most contiguous and complete genome to date for this lineage. Notably, <i>O. cubicus</i> possessed the largest genome within the order Tetraodontiformes, primarily due to extensive transposable element expansion. Phylogenetic analysis based on 19 whole genomes and 131 mitochondrial genomes resolved Tetraodontiformes into three major sister groups (Ostraciidae-Molidae, Tetraodontidae, and Balistidae-Monacanthidae). Comparative genomic evidence indicated that <i>O. cubicus</i> diverged early from the common ancestor of modern Tetraodontiformes and retained the highest number of <i>HOX</i> genes among surveyed taxa. Although overall genomic architecture was largely conserved, certain genetic and environmental changes may have contributed to its phenotypic adaptations, including climate cooling during the Miocene-Pliocene Transition, recent DNA and long interspersed nuclear element (LINE) transposon bursts, lineage-specific chromosomal rearrangements, and gene family expansion. Many positively selected genes and rapidly evolving genes were associated with skeletal development, including <i>bmp7</i>, <i>egf7</i>, and <i>bmpr2</i>. Transcriptomic comparisons between carapace and tail skin revealed various candidate genes and pathways related to carapace formation, such as <i>postn</i>, <i>scpp1</i>, and components of the TGF-β signaling pathway. A derived amino acid substitution in <i>eda</i>, coupled with protein structural modeling, suggested potential molecular convergence in dermal plate formation among teleosts. These findings provide novel insights into the genomic and developmental basis of carapace evolution and coral reef-adaptation in <i>O. cubicus</i>, offering a strong case for evolutionary balance between genomic conservation with regulatory innovation to achieve coral reef specialization.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"46 3","pages":"661-674"},"PeriodicalIF":4.0,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144095164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zoological ResearchPub Date : 2025-05-18DOI: 10.24272/j.issn.2095-8137.2024.473
Yao Liu, Luo-Ying Deme, Jia Liu, Shi-Xia Xu, Guang Yang
{"title":"Adaptive evolution of <i>BMP4</i> as a potential mechanism for flipper forelimb changes in cetaceans.","authors":"Yao Liu, Luo-Ying Deme, Jia Liu, Shi-Xia Xu, Guang Yang","doi":"10.24272/j.issn.2095-8137.2024.473","DOIUrl":"https://doi.org/10.24272/j.issn.2095-8137.2024.473","url":null,"abstract":"<p><p>Vertebrate limbs have undergone profound morphological diversification, enabling adaptations to a broad spectrum of ecological niches. In marine mammals, the evolution of highly specialized flipper-like forelimbs represents a profound structural transformation associated with aquatic habitats. This adaptation has been hypothesized to result, in part, from the inhibition of interphalangeal cell apoptosis during limb development, although the underlying genetic mechanism remains poorly understood. This study investigated the evolutionary dynamics and functional consequences of three key bone morphogenetic protein genes, <i>BMP2</i>, <i>BMP4</i>, and <i>BMP7</i>, which regulate apoptosis in interphalangeal mesenchymal stromal cells during embryonic limb development to ensure proper differentiation of interphalangeal tissues. Comparative genomic analysis revealed significantly accelerated evolution for <i>BMP4</i> and <i>BMP7</i> in the cetacean ancestral lineage, with two positively selected sites (V79I and H247R) involved in cetacean-specific amino acid substitutions located in the TGF-β propeptide functional domain in <i>BMP4</i>. <i>In vitro</i> assays confirmed that cetacean-specific <i>BMP4</i> mutations significantly disrupted normal cell apoptosis and proliferation and altered the transcription and protein expression of downstream apoptosis-related factors, including cytochrome c (Cyt c), BCL2 associated X, and B-cell lymphoma 2, within the BMP signaling pathway. The significant influence of <i>BMP4</i> mutations on apoptotic inhibition highlights a potential role in the development of limb bud mesenchymal tissue and the emergence of the flipper forelimb phenotype in cetaceans.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"46 3","pages":"675-683"},"PeriodicalIF":4.0,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144129257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zoological ResearchPub Date : 2025-05-18DOI: 10.24272/j.issn.2095-8137.2024.378
Chun-Xue Zhou, Si-Qi Wang, Ji-Yu Zhang, Xing Du, Qi-Fa Li
{"title":"HNRNPA2B1-mediated m6A modification enhances lncRNA NORHA stability to control granulosa cell functions.","authors":"Chun-Xue Zhou, Si-Qi Wang, Ji-Yu Zhang, Xing Du, Qi-Fa Li","doi":"10.24272/j.issn.2095-8137.2024.378","DOIUrl":"https://doi.org/10.24272/j.issn.2095-8137.2024.378","url":null,"abstract":"<p><p>NORHA, a long non-coding RNA (lncRNA), serves as a key inducer of follicular atresia in sows by triggering granulosa cells (GCs) apoptosis. However, its regulation by N6-methyladenosine (m6A)-the most abundant RNA modification-remains unresolved. This study identified NORHA as a functional target of the m6A reader HNRNPA2B1 in sow GCs (sGCs). Transcriptome-wide mapping of RNA modification sites revealed extensive m6A enrichment on NORHA, with HNRNPA2B1 binding directly to the transcript and enhancing its stability via modification of multiple m6A sites, including A261, A441, and A919. HNRNPA2B1 suppressed 17β-estradiol (E2) biosynthesis and promoted sGC apoptosis by activating the NORHA-FoxO1 axis. FoxO1 subsequently repressed expression of cytochrome P450 family 19 subfamily A member 1 (CYP19A1), which encodes the enzyme essential for E2 biosynthesis. Additionally, HNRNPA2B1 functioned as a critical mediator of METTL3-dependent m6A modification, modulating NORHA expression and activity in sGCs. This study highlights an important m6A-dependent regulatory mechanism governing NORHA expression in sGCs.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"46 3","pages":"722-732"},"PeriodicalIF":4.0,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144129259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zoological ResearchPub Date : 2025-05-18DOI: 10.24272/j.issn.2095-8137.2024.419
Jie Yang, Xin Liu, Cheng-Ye Li, Zhong-Tian Zhang, Xin-Yu Wu, Li-Qiang Jiang, Meng-Meng Fang, Liang-Xue Lai, Zhan-Jun Li, Yu-Ning Song
{"title":"<i>CPA1</i> <sup><i>S282P</i></sup> mutation leads to chronic pancreatitis in rabbits.","authors":"Jie Yang, Xin Liu, Cheng-Ye Li, Zhong-Tian Zhang, Xin-Yu Wu, Li-Qiang Jiang, Meng-Meng Fang, Liang-Xue Lai, Zhan-Jun Li, Yu-Ning Song","doi":"10.24272/j.issn.2095-8137.2024.419","DOIUrl":"https://doi.org/10.24272/j.issn.2095-8137.2024.419","url":null,"abstract":"<p><p>Chronic pancreatitis (CP) is a progressive and irreversible fibroinflammatory disease that markedly increases susceptibility to pancreatic cancer and remains without effective targeted therapies. Among the genetic contributors to CP, the carboxypeptidase A1 p.Ser282Pro ( <i>CPA1</i> <sup><i>S282P</i></sup> ) variant has been proposed to promote disease through misfolding-induced endoplasmic reticulum stress (ERS), although the broader pathogenic landscape remains incompletely defined. This study generated a rabbit model mimicking the human <i>CPA1</i> <sup><i>S282P</i></sup> mutation using the SpRY-ABE-8.17 system. Homozygous <i>CPA1</i> <sup><i>S282P</i></sup> rabbits exhibited characteristic human CP phenotypes following alcohol induction, including visceral pain, elevated serum lipase and amylase, inflammatory cell infiltration, and extensive pancreatic fibrosis. Biochemical analyses confirmed that the p.S282P mutation induced <i>CPA1</i> misfolding and elevated the expression of ERS markers GRP78 and CHOP in both transfected HEK293T cells and homozygous mutant rabbits. Notably, the <i>CPA1</i> <sup><i>S282P</i></sup> mutation markedly disrupted intra-pancreatic lipid homeostasis, contributing to the development of CP in mutant rabbits. This study successfully established the first rabbit model of CP that accurately recapitulates CP caused by a defined human point mutation. Additionally, this study provides insights into a previously unrecognized link between <i>CPA1</i> and intra-pancreatic lipid metabolism, offering a foundation for identifying novel therapeutic targets for human CP.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"46 3","pages":"647-660"},"PeriodicalIF":4.0,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144095246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zoological ResearchPub Date : 2025-05-18DOI: 10.24272/j.issn.2095-8137.2024.360
Shan-Shan Li, Shi-Bin Bai, Xiao-Fei Sun, Cheng-Hua Yu, Yi-Ning Tang, Zi-Qiu Jia, Xiao-Ping Li, Song-Yang Shang, David M Irwin, Jun Li, Zhe Wang
{"title":"<i>Zic3</i> represses anterior digit development in tetrapods.","authors":"Shan-Shan Li, Shi-Bin Bai, Xiao-Fei Sun, Cheng-Hua Yu, Yi-Ning Tang, Zi-Qiu Jia, Xiao-Ping Li, Song-Yang Shang, David M Irwin, Jun Li, Zhe Wang","doi":"10.24272/j.issn.2095-8137.2024.360","DOIUrl":"https://doi.org/10.24272/j.issn.2095-8137.2024.360","url":null,"abstract":"<p><p>Pentadactyl limbs represent a conserved morphological feature among tetrapods, with anterior digits considered more important than posterior digits for refined movement. While posterior digit formation is governed by graded expression of the <i>Shh</i> and 5' <i>Hox</i> genes, the regulatory mechanisms underlying anterior digit development, especially digit I (DI), remain poorly defined. This study identified an anterior expression pattern of <i>Zic3</i> in the limb buds of representative tetrapods, including humans, which exerted an inhibitory effect on skeletal development. <i>Zic3</i> was highly expressed in the anterior region of limb buds at early developmental stages, with species-specific divergence emerging during later development. Overexpression of <i>Zic3</i> significantly delayed chondrogenesis and ossification, leading to bone shortening but not loss. Furthermore, RNA sequencing demonstrated that <i>Zic3</i> down-regulated key genes associated with skeletal development, including <i>Cytl1</i>, <i>Sox9, Ihh</i>, <i>Ptch1</i>, <i>Runx2</i>, and <i>Wnt16</i>. These findings demonstrate that <i>Zic3</i> acts as a conserved inhibitor of anterior skeletal maturation and contributes to the molecular asymmetry of tetrapod limb development.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"46 3","pages":"684-694"},"PeriodicalIF":4.0,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144129256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transcriptomic profiling of cardiac development in Bama Xiang pigs across key developmental stages.","authors":"Sheng-Nan Wang, Wen-Jie Tian, Deng-Ke Pan, Tang Hai, Yue-Hui Ma, Dan-Dan Wang, Lin Jiang","doi":"10.24272/j.issn.2095-8137.2024.348","DOIUrl":"https://doi.org/10.24272/j.issn.2095-8137.2024.348","url":null,"abstract":"<p><p>Pigs have emerged as valuable large-animal models for cardiac xenotransplantation; however, the temporal dynamics of myocardial development in this species remains insufficiently defined. This study analyzed gene expression patterns across four key developmental stages (neonatal, juvenile, sexual maturity, and adulthood) to delineate the molecular mechanisms driving porcine myocardial development. Increases in heart weight were accompanied by proportional expansion of myocardial fiber area and chamber size, reflecting coordinated structural development. Transcriptomic profiling of myocardial tissue by RNA sequencing (RNA-seq) identified 2 189 differentially expressed genes (DEGs) across stage comparisons. Short time-series expression miner (STEM) analysis classified these DEGs into four major expression clusters enriched in pathways associated with myocardial development, immune responses, cell proliferation, and metabolic processes. Among 359 DEGs conserved across all developmental stages, six candidate genes were strongly associated with myocardial development. Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) confirmed a significant correlation between the expression of these candidate genes and myocardial development in porcine tissue. These findings establish a transcriptomic framework for porcine myocardial maturation and provide a molecular basis for advancing cardiac xenotransplantation.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"46 3","pages":"634-646"},"PeriodicalIF":4.0,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144095167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ribosome-associated pathological TDP-43 alters the expression of multiple mRNAs in the monkey brain.","authors":"Fu-Yu Deng, Gao-Lu Zhu, Kai-Li Ou, Long-Hong Zhu, Qing-Qing Jia, Xiang Wang, Ming-Wei Guo, Bang Li, Shi-Hua Li, Xiao-Jiang Li, Peng Yin","doi":"10.24272/j.issn.2095-8137.2024.286","DOIUrl":"10.24272/j.issn.2095-8137.2024.286","url":null,"abstract":"<p><p>Cytoplasmic accumulation of TDP-43 is a pathological hallmark of amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. While current studies have primarily focused on gene regulation mediated by full-length nuclear TDP-43, the potential effects of cytoplasmic TDP-43 fragments remain less explored. Our previous findings demonstrated that primate-specific cleavage of TDP-43 contributes to its cytoplasmic localization, prompting further investigation into its pathological effects. In the cynomolgus monkey brain, we observed that mutant or truncated TDP-43 was transported onto the ribosome organelle. Ribosome-associated transcriptomic analysis revealed dysregulation of apoptosis- and lysosome-related genes, indicating that cytoplasmic TDP-43 induces neurotoxicity by binding to ribosomes and disrupting mRNA expression. These findings provide mechanistic insights into the gain-of-function effects of pathological TDP-43.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"46 2","pages":"263-276"},"PeriodicalIF":4.0,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12000131/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143460233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zoological ResearchPub Date : 2025-03-18DOI: 10.24272/j.issn.2095-8137.2024.276
Ju Zhang, Zi-Han Ding, Peng-Fei Wu, Wei-Guo Du, Yue-Qiang Guan, Xi-Feng Wang
{"title":"Disentangling the molecular mechanisms underlying yellow body coloration in a soft-shelled turtle.","authors":"Ju Zhang, Zi-Han Ding, Peng-Fei Wu, Wei-Guo Du, Yue-Qiang Guan, Xi-Feng Wang","doi":"10.24272/j.issn.2095-8137.2024.276","DOIUrl":"10.24272/j.issn.2095-8137.2024.276","url":null,"abstract":"<p><p>While the functions of body coloration have been well characterized in many animal taxa, the molecular mechanisms governing its production remain poorly understood. This study investigated the genetic and biochemical basis of yellow body coloration in a mutant form of the Yongzhang golden soft-shelled turtle (YGT, <i>Pelodiscus sinensis</i>), which exhibit a striking yellow phenotype. Comparative pigment analysis revealed that YGTs have significantly lower melanin and higher carotenoid pigmentation compared to atrovirens wild-type turtles (AWTs), while pterin concentrations did not differ between the two groups. Functional validation experiments demonstrated that a single amino acid substitution (I481R) in tyrosinase-related protein 1 ( <i>tyrp1</i>) plays a pivotal role in the reduction of melanin production in YGTs. Expression of <i>tyrp1</i> from YGTs and AWTs in A375 cells, in which human <i>tyrp1</i> (h <i>tyrp1</i>) function was depleted by CRISPR-Cas9, led to a specific reduction in melanin production in cells expressing the YGT- <i>tyrp1</i> variant. Moreover, <i>bco1</i> and <i>bco2</i>, genes negatively associated with carotenoid content, showed reduced expression in YGTs, suggesting that yellow coloration is achieved through a reduction in melanin pigmentation combined with an accumulation of carotenoids. These findings elucidate the molecular basis of yellow body coloration in turtles and enhance our understanding of pigment regulation in vertebrates.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"46 2","pages":"379-387"},"PeriodicalIF":4.0,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12000137/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143651557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}