Large animal models for investigating the applications of photodynamic therapy.

IF 4.7 1区 生物学 Q1 ZOOLOGY
Heng-Zong Zhou, Dong-Xu Wang, Yu-Qiang Qian, Jia-Qi Wei, Sen Ma, Yu-Jing Feng, Yang Hao
{"title":"Large animal models for investigating the applications of photodynamic therapy.","authors":"Heng-Zong Zhou, Dong-Xu Wang, Yu-Qiang Qian, Jia-Qi Wei, Sen Ma, Yu-Jing Feng, Yang Hao","doi":"10.24272/j.issn.2095-8137.2024.445","DOIUrl":null,"url":null,"abstract":"<p><p>Photodynamic therapy (PDT) is an emerging minimally invasive therapeutic modality that relies on the activation of a photosensitizing agent by light of a specific wavelength in the presence of molecular oxygen, leading to the generation of reactive oxygen species (ROS). This mechanism facilitates selective cytotoxic effects within pathological tissues and has demonstrated therapeutic potential across diverse disease contexts. However, the broader clinical applications remain limited by photosensitizer selectivity, shallow light penetration, and the risk of off-target cytotoxicity. Recent advancements in PDT have focused on the development of next-generation photosensitizers, the integration of nanotechnology for enhanced delivery and targeting, and the strategic combination of PDT with complementary therapeutic approaches. Experimental animal models play a crucial role in validating the efficacy and safety of PDT, optimizing its therapeutic parameters, and determining its mechanisms of action. This review provides a comprehensive overview of PDT applications in various disease models, including oncological, infectious, and nonconventional indications. Special emphasis is placed on the importance of large animal models in PDT research, such as rabbits, pigs, dogs, and non-human primates, which provide experimental platforms that more closely resemble human physiological and pathological states. The use of these models for understanding the mechanisms of PDT, optimizing therapeutic regimens, and evaluating clinical outcomes is also discussed. This review aims to inform future directions in PDT research and emphasizes the importance of selecting appropriate preclinical animal models to facilitate successful clinical translation.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"46 3","pages":"551-575"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361901/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.24272/j.issn.2095-8137.2024.445","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Photodynamic therapy (PDT) is an emerging minimally invasive therapeutic modality that relies on the activation of a photosensitizing agent by light of a specific wavelength in the presence of molecular oxygen, leading to the generation of reactive oxygen species (ROS). This mechanism facilitates selective cytotoxic effects within pathological tissues and has demonstrated therapeutic potential across diverse disease contexts. However, the broader clinical applications remain limited by photosensitizer selectivity, shallow light penetration, and the risk of off-target cytotoxicity. Recent advancements in PDT have focused on the development of next-generation photosensitizers, the integration of nanotechnology for enhanced delivery and targeting, and the strategic combination of PDT with complementary therapeutic approaches. Experimental animal models play a crucial role in validating the efficacy and safety of PDT, optimizing its therapeutic parameters, and determining its mechanisms of action. This review provides a comprehensive overview of PDT applications in various disease models, including oncological, infectious, and nonconventional indications. Special emphasis is placed on the importance of large animal models in PDT research, such as rabbits, pigs, dogs, and non-human primates, which provide experimental platforms that more closely resemble human physiological and pathological states. The use of these models for understanding the mechanisms of PDT, optimizing therapeutic regimens, and evaluating clinical outcomes is also discussed. This review aims to inform future directions in PDT research and emphasizes the importance of selecting appropriate preclinical animal models to facilitate successful clinical translation.

研究光动力疗法应用的大型动物模型。
光动力疗法(PDT)是一种新兴的微创治疗方式,它依靠特定波长的光在分子氧存在下激活光敏剂,导致活性氧(ROS)的产生。这种机制促进了病理组织中选择性的细胞毒性作用,并在不同的疾病背景下显示出治疗潜力。然而,更广泛的临床应用仍然受到光敏剂选择性、浅光穿透和脱靶细胞毒性风险的限制。PDT的最新进展集中在下一代光敏剂的开发,纳米技术的集成以增强传递和靶向性,以及PDT与补充治疗方法的战略结合。实验动物模型在验证PDT的有效性和安全性、优化其治疗参数和确定其作用机制方面发挥着至关重要的作用。本文综述了PDT在各种疾病模型中的应用,包括肿瘤、感染性和非常规适应症。特别强调了大型动物模型在PDT研究中的重要性,如兔子、猪、狗和非人类灵长类动物,它们提供了更接近人类生理和病理状态的实验平台。本文还讨论了这些模型在理解PDT机制、优化治疗方案和评估临床结果方面的应用。本综述旨在为PDT研究的未来方向提供信息,并强调选择合适的临床前动物模型以促进成功的临床转化的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Zoological Research
Zoological Research Medicine-General Medicine
CiteScore
7.60
自引率
10.20%
发文量
1937
审稿时长
8 weeks
期刊介绍: Established in 1980, Zoological Research (ZR) is a bimonthly publication produced by Kunming Institute of Zoology, the Chinese Academy of Sciences, and the China Zoological Society. It publishes peer-reviewed original research article/review/report/note/letter to the editor/editorial in English on Primates and Animal Models, Conservation and Utilization of Animal Resources, and Animal Diversity and Evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信