{"title":"Seasonality in atmospheric circulation patterns leading to wet and dry seasons in southeast Australia and implications for droughts","authors":"Irina Rudeva","doi":"10.1016/j.wace.2025.100750","DOIUrl":"10.1016/j.wace.2025.100750","url":null,"abstract":"<div><div>Southeastern Australia has experienced two major droughts in recent decades: the Millennium Drought that started in 1997 and lasted for more than a decade and the Tinderbox Drought (2017–2019) that was shorter but more intense. As has been reported by previous studies, the termination of droughts in semi-arid regions effectively happens after very wet events at monthly-to-seasonal time scales. Building on this finding, the paper reviews the drivers of very wet events in southeastern Australia across different seasons. From the start of autumn till the end of spring, the rainfall in southeast Australia is significantly correlated with the moisture over the Maritime continent, which may be modulated by the Indian Ocean Dipole (IOD) in winter and spring, or other processes such as the Madden-Julian Oscillation in the warmer months. It is shown that tropical convection interacts with extratropical Rossby waves enhancing low-pressure anomalies that help transport moisture into southeastern Australia, thereby contributing to increased rainfall from April to November. Warm season rainfall anomalies show no direct link to large-scale drivers. By considering these relationships, the study explores the large-scale conditions during the Millennium and Tinderbox Droughts to understand why wet events at subseasonal to seasonal time scales were absent during those periods. It is proposed that the Millennium Drought was promoted by the positive phase of the Atlantic Multidecadal Oscillation, which may affect low-frequency rainfall variability in southeast Australia by modulating the relationship between the IOD and the moisture over the Maritime continent, especially during the early cool season. This approach doesn't fully elucidate the severity of rainfall anomalies; rather, it focuses on understanding the termination of droughts.</div></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":"48 ","pages":"Article 100750"},"PeriodicalIF":6.1,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143593685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Charlotte M. McBride , Andries C. Kruger , Charmaine Johnston , Liesl Dyson
{"title":"Projected changes in daily temperature extremes for selected locations over South Africa","authors":"Charlotte M. McBride , Andries C. Kruger , Charmaine Johnston , Liesl Dyson","doi":"10.1016/j.wace.2025.100753","DOIUrl":"10.1016/j.wace.2025.100753","url":null,"abstract":"<div><div><em>E</em>xtreme events, particularly very high temperatures, are expected to increase because of climate change. It is thus essential that localised studies be done to quantify the magnitude of potential changes so that proper planning, especially effective adaptation measures, can be affected. This study analysed annual extreme daily maximum temperatures for future climate change scenarios at 22 locations in South Africa, through analysis of a subset of the Coordinated Regional Downscaling Experiment (CORDEX) model ensemble datasets. The multi-model simulations were validated against observational data obtained from the South African Weather Service for the period 1976–2005. Two study periods of mid- (2036–2065) and far-future (2066–2095) were analysed for two Representative Concentration Pathways, i.e., RCP4.5 and RCP8.5. Bias correction was done on the model data to correct simulated historical climate data, to be more characteristic of observed measurements. While the method included adjustment for variance, systematic underestimations of extremes were still evident. The Generalized Extreme Value distributions were fitted to the bias-corrected projections, and 10-, 50- to 100-year return periods quantile values were estimated. The return period quantile values are likely to increase under both Representative Concentration Pathways in the mid- and far-future periods, with the largest increase in return period quantile values set to occur towards the end of the century under the highest emission scenario. All stations showed an increase in the frequency of days with maximum temperatures above specific critical thresholds, with some stations under the RCP8.5 scenario projected to experience temperatures of greater than 32°C (35°C) for more than 200 (100) days per year by the end of the century, an increase from a baseline of approximately 70 to 150 (14 to 83). For the same scenario, Return periods for 38°C for most stations are projected to be shorter than a year. From the above and considering the likely underestimation in the severity of the projected changes, i.e. too low return period quantile values, the general implication is a strong likelihood that most places in South Africa is likely to experience a strong increase in the intensity, duration, and frequency of very hot extremes in future, with potentially dire consequences to relevant socio-economic sectors. We suggest that future research, comprised of the full set of CORDEX data be conducted to optimise the results of this study.</div></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":"47 ","pages":"Article 100753"},"PeriodicalIF":6.1,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143437345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanheng Luo , Song Yang , Tuantuan Zhang , Yueyue Yu , Ming Luo , Lianlian Xu
{"title":"Distinctive local and large-scale processes associated with daytime, nighttime and compound heatwaves in China","authors":"Yanheng Luo , Song Yang , Tuantuan Zhang , Yueyue Yu , Ming Luo , Lianlian Xu","doi":"10.1016/j.wace.2025.100749","DOIUrl":"10.1016/j.wace.2025.100749","url":null,"abstract":"<div><div>Different heatwave types exert distinctive impacts on the socio-economic and ecosystems, but the potential mechanisms for different heatwave types remain poorly understood. In this study, we identify the hot spots of daytime, nighttime, and compound heatwaves over China during 1991–2022, and provide a systematic investigation of their distinctive atmospheric configurations. The results show that the daytime heatwave clusters in China are closely linked to the various teleconnection wave trains (i.e., Eurasian or Scandinavian patterns) with quasi-barotropic structures. The hot spots are typically located at the center or southern flank of the anticyclone in the troposphere, accompanied by anomalous descending motions and reduced cloud cover, thus providing dry-hot conditions for daytime heatwaves. In comparison, the nighttime heatwave clusters are modulated by the atmospheric circulations that exhibit more local features, and the hot spots are generally located between the anticyclone and the cyclone with anomalous ascending motions. This feature favors the convergence of water vapor and leads to more cloudy and moist conditions, which hinder upward emissions of longwave radiation at night. On the other hand, the hot spots of compound heatwave clusters are controlled by the anticyclone in the middle level while they are located between the anticyclone and the cyclone in the lower level, which can simultaneously cause adiabatic descending motions and enhanced water vapor, conducive to the continuation of high temperature from daytime to nighttime.</div></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":"47 ","pages":"Article 100749"},"PeriodicalIF":6.1,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143430056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamical downscaling projections of mean and extreme climate over the Tibetan Plateau under 2 SSP scenarios","authors":"Jiewei Zhou , Jianbin Huang , Yao Yao , Yong Luo","doi":"10.1016/j.wace.2025.100747","DOIUrl":"10.1016/j.wace.2025.100747","url":null,"abstract":"<div><div>The Tibetan Plateau (TP) has consistently garnered attention due to its sensitivity to global climate change and the implications of future global warming. This study employs the Weather Research and Forecasting (WRF) model, driven by three global models from the Sixth Coupled Model Intercomparison Project (CMIP6), to investigate future mean and extreme climate changes over the TP. WRF's historical simulation (1995–2014) more accurately reproduces the spatial distribution of temperature, precipitation, and climate extremes compared to global models. Projections suggest that by mid-21st century, under SSP1-2.6 and SSP5-8.5, the TP's average temperature will rise by 1.27 °C and 1.91 °C, respectively, with autumn experiencing the most warming. The western plateau is expected to warm more than the eastern part. Precipitation over the TP is expected to increase, especially in the northwest and central-east regions, by 5%–10%, with winter precipitation increasing by more than 10% under the SSP5-8.5 scenario. Extreme high-temperature events are projected to increase in frequency and intensity, while extreme low-temperature events are expected to decrease and weaken. The intensity and frequency of extreme heavy precipitation events are also expected to rise, mainly in the western and southeastern plateau. Drought events are projected to become less severe in north TP, especially in the Qaidam Basin. The differences between WRF simulations and global models in seasonal and scenario-dependent changes underscore that regional models capture finer regional climate details and reveal limitations in global models. Hence, it is crucial to consider these differences when assessing climate impacts and developing adaptation strategies.</div></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":"47 ","pages":"Article 100747"},"PeriodicalIF":6.1,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143446091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Representation of extreme El Niño events and associated atmospheric moisture flux divergence in the central-eastern tropical Pacific in a CMIP6 model ensemble","authors":"Janeet Sanabria , Raphael Neukom , Alan Llacza , Nadine Salzmann , Pierluigi Calanca","doi":"10.1016/j.wace.2025.100746","DOIUrl":"10.1016/j.wace.2025.100746","url":null,"abstract":"<div><div>Extreme El Niño events entail important socio-economic challenges, both in regions such as South America directly affected by their impacts and in regions around the world that are influenced by the associated teleconnections. Uncertainty remains about the ability of recent climate models to reproduce the characteristics and impacts of extreme El Niño events. In this study, we evaluate the ability of 32 CMIP6 models to simulate extreme El Niño events, focusing on their occurrence, their seasonal evolution, and the characteristics of the associated atmospheric moisture flux divergence. Our results reveal the reasonable performance of the CMIP6 ensemble in reproducing the observed anomalies and seasonal cycles of extreme El Niño events. The ensemble mean also captures the average temporal evolution and magnitudes of moisture flux anomalies, but fails to reproduce some important aspects of the associated spatial patterns. Most individual models have marked deficiencies in adequately simulating the seasonal cycle of atmospheric moisture flux divergence dynamics and reproducing a clear distinction between moderate and extreme events. The latter indicates that the atmospheric–ocean coupling and resulting precipitation anomaly patterns over Ecuador and northern Peru are still not correctly reproduced by the individual models. These deficiencies echo previous studies and underscore the limitations of current global climate models in providing reliable insights into the impacts of climate change on El Niño extremes and their consequences for regional atmospheric dynamics and precipitation. This work highlights the need for further research to improve model representations of extreme El Niño events and their associated impacts on vulnerable regions, thereby facilitating more effective risk management and adaptation measures.</div></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":"47 ","pages":"Article 100746"},"PeriodicalIF":6.1,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143387447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joyce Kimutai , Clair Barnes , Mariam Zachariah , Sjoukje Y. Philip , Sarah F. Kew , Izidine Pinto , Piotr Wolski , Gerbrand Koren , Gabriel Vecchi , Wenchang Yang , Sihan Li , Maja Vahlberg , Roop Singh , Dorothy Heinrich , Julie Arrighi , Carolina Pereira Marghidan , Lisa Thalheimer , Cheikh Kane , Emmanuel Raju , Friederike E.L. Otto
{"title":"Human-induced climate change increased 2021–2022 drought severity in horn of Africa","authors":"Joyce Kimutai , Clair Barnes , Mariam Zachariah , Sjoukje Y. Philip , Sarah F. Kew , Izidine Pinto , Piotr Wolski , Gerbrand Koren , Gabriel Vecchi , Wenchang Yang , Sihan Li , Maja Vahlberg , Roop Singh , Dorothy Heinrich , Julie Arrighi , Carolina Pereira Marghidan , Lisa Thalheimer , Cheikh Kane , Emmanuel Raju , Friederike E.L. Otto","doi":"10.1016/j.wace.2025.100745","DOIUrl":"10.1016/j.wace.2025.100745","url":null,"abstract":"<div><div>From October 2020 to early 2023, Eastern Africa experienced five consecutive failed (SPEI -2.6) rainy seasons, resulting in the worst drought in 40 years. This led to harvest failures, livestock losses, water scarcity, and conflicts, leaving approximately 4.35 million people in need of humanitarian aid. To understand the role of human-induced climate change in the drought, we analysed rainfall trends and the combined effect of rainfall deficit with high temperatures in the Southern Horn of Africa covering parts of southern Ethiopia, southern Somalia, and eastern Kenya. We employed various climate models and observations to assess changes in 24-month rainfall (2021–2022), and seasonal rainfall; both the (March-April-May, MAM) ‘long rains’ and (October-November-December, OND) ‘short rains’ in 2022. We also contextualised the event in terms of vulnerability and exposure to understand how these elements influenced the magnitude of the impacts. Our analysis shows that anthropogenic influence on the combined effects of low rainfall and high evapotranspiration caused by higher temperatures made the drought exceptional, leading to major crop and pasture losses and water shortages. Our results also show a decline in rainfall during MAM and an upward trend during OND, which is attributable to climate change. Despite the wetting trend in OND season, the drought years concluded with successive La Niña conditions, typically linked with below-average rainfall in the region during that season. We do not find a trend in the 24-month precipitation. The assessment on vulnerability and exposure highlights the need for enhanced preparedness of government drought management systems and international aid infrastructure for future severe and prolonged droughts. The study's findings, combined with climate projections that indicate increased heavy precipitation in the region, underscore the pressing necessity for robust adaptation strategies that can address both wet and dry extremes. The impacts of climate change in Eastern Africa necessitate investments in adaptive measures and resilience building that can evolve with emerging climate signals.</div></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":"47 ","pages":"Article 100745"},"PeriodicalIF":6.1,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143418591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Son C. H. Truong, Hamish A. Ramsay, Tony Rafter, Marcus J. Thatcher
{"title":"Simulation of an intense tropical cyclone in the conformal cubic atmospheric model and its sensitivity to horizontal resolution","authors":"Son C. H. Truong, Hamish A. Ramsay, Tony Rafter, Marcus J. Thatcher","doi":"10.1016/j.wace.2025.100744","DOIUrl":"10.1016/j.wace.2025.100744","url":null,"abstract":"<div><div>In this study, we evaluated the Conformal Cubic Atmospheric Model's (CCAM) ability to simulate the characteristics of severe Tropical Cyclone (TC) Hina, which occurred in the Southwest Pacific in 1985. We compared the model's performance using both a quasi-uniform grid and a variable-resolution grid to investigate differences in the representation of TC Hina's properties, such as tracks and intensity. We further examined the impact of horizontal resolutions (50 km, 25 km, and 12.5 km) on the wind structure, surface fluxes, and precipitation. Our findings indicate that CCAM reasonably reproduces the TC Hina's track, aligning with IBTrACS and ERA5 data. Higher resolutions in both quasi-uniform and variable resolution configurations result in improved representation of Hina's intensity, with the 12.5 km resolution showing the best performance. Both grid configurations show similar time series of maximum wind speed (V<sub>max</sub>) and minimum sea level pressure (SLP<sub>min</sub>). The model is able to accurately represent a range of synoptic meteorological phenomena surrounding the TC centre, as well as the moisture sources feeding into the inner-core of the TC at higher resolutions. Furthermore, we find that the simulated structures of the TC, including primary and secondary circulations, surface fluxes, and precipitation are strongly influenced by horizontal resolution. Our findings suggest that higher resolutions promote greater precipitation and larger latent heat fluxes near the TC centre (facilitating TC intensification). While challenges remain in simulating TCs over the entire Australasian CORDEX domain, the study demonstrates CCAM's capability to simulate intense TCs at high resolution. These findings provide valuable insights into the understanding of how CCAM can be effectively utilised for regional climate projections of TCs.</div></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":"47 ","pages":"Article 100744"},"PeriodicalIF":6.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143276613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Data-driven upper bounds and event attribution for unprecedented heatwaves","authors":"Mark D. Risser , Likun Zhang , Michael F. Wehner","doi":"10.1016/j.wace.2025.100743","DOIUrl":"10.1016/j.wace.2025.100743","url":null,"abstract":"<div><div>The last decade has seen numerous record-shattering heatwaves in all corners of the globe. In the aftermath of these devastating events, there is interest in identifying worst-case thresholds or upper bounds that quantify just how hot temperatures can become. Generalized Extreme Value theory provides a data-driven estimate of extreme thresholds; however, upper bounds may be exceeded by future events, which undermines attribution and planning for heatwave impacts. Here, we show how the occurrence and relative probability of observed yet unprecedented events that exceed <em>a priori</em> upper bound estimates, so-called “impossible” temperatures, has changed over time. We find that many unprecedented events are actually within data-driven upper bounds, but only when using modern spatial statistical methods. Furthermore, there are clear connections between anthropogenic forcing and the “impossibility” of the most extreme temperatures. Robust understanding of heatwave thresholds provides critical information about future record-breaking events and how their extremity relates to historical measurements.</div></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":"47 ","pages":"Article 100743"},"PeriodicalIF":6.1,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143072650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haider Ali , Leonard Chek Yuet Wong , Andreas F. Prein , Hayley J. Fowler
{"title":"Characteristics of precipitation associated with post-tropical cyclones in the North Atlantic","authors":"Haider Ali , Leonard Chek Yuet Wong , Andreas F. Prein , Hayley J. Fowler","doi":"10.1016/j.wace.2024.100742","DOIUrl":"10.1016/j.wace.2024.100742","url":null,"abstract":"<div><div>Precipitation brought by cyclone systems has long been known as a major contributor to devastating flood events.Recent post-tropical cyclones (PTCs), which transform from tropical cyclones (TC) to extratropical cyclones (ETC) in the mid-latitudes, are among the strongest cyclones in the mid-latitude European region. Understanding PTCs and their precipitation behavior, particularly in the context of recent observations, is crucial for assessing and mitigating hazards effectively. Here, we couple precipitation data and best track data to examine different aspects of PTCs, such as track characteristics and the associated precipitation behavior. Using the International Best Track Archive for Climate Stewardship (IBTrACS) data from 2001 to 2020, we find that TCs and ETCs peak during fall months, especially in October, with cyclogenesis and extratropical transition (ET) locations varying seasonally. ETCs share characteristics with frontal cyclones, such as faster translation velocities and larger radii than TCs. Hourly precipitation data from Integrated Multi-satellitE Retrievals for Global precipitation measurement <strong>(</strong>IMERG) (2001–2020) shows lower intensity during ETC phases compared to TC phases but with broader areal coverage – precipitation shields -, with ETCs consistently producing more total rainfall over 24 h. The centroid of precipitation regions during ETC phases shifts northeast of the cyclone centers for short-duration rainfall and west-southwest for longer durations, indicating widespread precipitation further from the cyclone centre. We found asymmetric precipitation distributions favoring the left side of the cyclone track during ETC phases, especially for lower-intensity events. Our results provide valuable insights into the evolving nature of PTCs, and their impact on precipitation patterns, which are crucial for hazard assessment models and mitigation strategies to safeguard communities and minimize the risks associated with these potential hazards.</div></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":"47 ","pages":"Article 100742"},"PeriodicalIF":6.1,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142889394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G.A. Torsah , M.A. Osei , J.N.A. Aryee , J.A.A. Oti , L.K. Amekudzi
{"title":"Triggers of inland heavy rainfall inducing convective storms in West Africa : Case study of June, 2021","authors":"G.A. Torsah , M.A. Osei , J.N.A. Aryee , J.A.A. Oti , L.K. Amekudzi","doi":"10.1016/j.wace.2024.100740","DOIUrl":"10.1016/j.wace.2024.100740","url":null,"abstract":"<div><div>Due to their rapidly changing atmospheric processes, forecasting thunderstorms resulting from the merger of isolated cells is a complex task for highly-resolved numerical weather prediction models. This study employed a novel approach to establish the processes that drive updrafts and downdrafts in the merger of isolated thunderstorm cells that produced heavy rainfall and flooding in Kumasi and other parts of the Ashanti Region during June 23–24, 2021. We examine the dynamic and thermodynamic factors to determine the processes that led to the heavy rainfall. The study confirms that the established moisture gradient between the south and north of the region leads to differential surface heating that deepens the planetary boundary layer. Additionally, colder air aloft a warmer surface induces atmospheric overturning, impacts the CAPE and produces substantial updrafts. Also, lower equivalent potential temperature values before storm events, coupled with reduced warming and moisture and increased vertical motion, especially in the mid-levels, favor dry air entrainment, thereby enhancing updraft potential in the mid-troposphere. Besides, the study found that strong rainfall during storms correlates with high soil moisture, evaporative fraction, and variable CAPE and updrafts, which prolonged surface convergence and upper-level divergence, leading to sustained convective activity and heavy rainfall. Notably, the study establishes the roles of African Easterly Waves and low-level wind shear in influencing thunderstorm updrafts and rainfall propagation. Furthermore, we found a single-cell thunderstorm with a variable wind pattern that impacted a defined path during the storm progression. These findings provide valuable information to enhance the development of early warning systems for the detection of localized thunderstorm activities during the monsoon period.</div></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":"47 ","pages":"Article 100740"},"PeriodicalIF":6.1,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}