穿越菲律宾群岛的超级台风“拉伊”(2021)眼壁的破裂和恢复

IF 6.9 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Yuki Nakamura, Ryuichi Kawamura, Tetsuya Kawano, Takashi Mochizuki
{"title":"穿越菲律宾群岛的超级台风“拉伊”(2021)眼壁的破裂和恢复","authors":"Yuki Nakamura,&nbsp;Ryuichi Kawamura,&nbsp;Tetsuya Kawano,&nbsp;Takashi Mochizuki","doi":"10.1016/j.wace.2025.100763","DOIUrl":null,"url":null,"abstract":"<div><div>To advance the comprehensive knowledge of the breakdown and recovery processes of tropical cyclones (TCs) that cross the Philippine Islands, we highlighted Super Typhoon Rai (2021)and performed a control (CTL) run and two sensitivity runs in which the topography of the islands was modified, using a regional atmospheric model. The two sensitivity runs consisted of the Flat Land (FL) run, in which the mountain elevation was modified to 0 m, and the Ocean (OC) run, in which the islands were replaced by the ocean. Rai attenuated rapidly in the CTL and FL runs during landfall, and its weakening rate was mostly the same between the two runs. In the two runs, similar decreases in the diabatic heating rate, equivalent potential temperature in the planetary boundary layer (PBL), tangential wind speed, and PBL inflow characterized the eyewall breakdown, suggesting that land surface friction and less surface evaporation facilitate the breakdown process. In contrast, the eyewall recovery was earlier in the FL run than in the CTL run. The wind-terrain interaction due to mountainous terrain may cause the differences in the recovery process between the two runs. When Rai entered the South China Sea, its intensity in the two runs was reinforced rapidly and became comparable to that in the OC run. It was also found that a distinctive change in the observed eye size before and after Rai passes through the islands is not due to the modification forced by the terrain because the eye size in the OC run expands continuously. At the second peak phase of Rai's intensity, the TC sizes in the CTL and FL runs were smaller than that in the OC run, implying that the presence and absence of the eyewall breakdown lead to such a difference. The expansion of the TC size was inhibited even though the eyewall recovered completely after crossing the islands.</div></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":"48 ","pages":"Article 100763"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breakdown and recovery of the eyewall of Super Typhoon Rai (2021) crossing the Philippine Islands\",\"authors\":\"Yuki Nakamura,&nbsp;Ryuichi Kawamura,&nbsp;Tetsuya Kawano,&nbsp;Takashi Mochizuki\",\"doi\":\"10.1016/j.wace.2025.100763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To advance the comprehensive knowledge of the breakdown and recovery processes of tropical cyclones (TCs) that cross the Philippine Islands, we highlighted Super Typhoon Rai (2021)and performed a control (CTL) run and two sensitivity runs in which the topography of the islands was modified, using a regional atmospheric model. The two sensitivity runs consisted of the Flat Land (FL) run, in which the mountain elevation was modified to 0 m, and the Ocean (OC) run, in which the islands were replaced by the ocean. Rai attenuated rapidly in the CTL and FL runs during landfall, and its weakening rate was mostly the same between the two runs. In the two runs, similar decreases in the diabatic heating rate, equivalent potential temperature in the planetary boundary layer (PBL), tangential wind speed, and PBL inflow characterized the eyewall breakdown, suggesting that land surface friction and less surface evaporation facilitate the breakdown process. In contrast, the eyewall recovery was earlier in the FL run than in the CTL run. The wind-terrain interaction due to mountainous terrain may cause the differences in the recovery process between the two runs. When Rai entered the South China Sea, its intensity in the two runs was reinforced rapidly and became comparable to that in the OC run. It was also found that a distinctive change in the observed eye size before and after Rai passes through the islands is not due to the modification forced by the terrain because the eye size in the OC run expands continuously. At the second peak phase of Rai's intensity, the TC sizes in the CTL and FL runs were smaller than that in the OC run, implying that the presence and absence of the eyewall breakdown lead to such a difference. The expansion of the TC size was inhibited even though the eyewall recovered completely after crossing the islands.</div></div>\",\"PeriodicalId\":48630,\"journal\":{\"name\":\"Weather and Climate Extremes\",\"volume\":\"48 \",\"pages\":\"Article 100763\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weather and Climate Extremes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212094725000210\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Climate Extremes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212094725000210","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

为了全面了解穿越菲律宾群岛的热带气旋(tc)的破坏和恢复过程,我们重点介绍了超级台风Rai(2021),并进行了控制(CTL)运行和两次敏感性运行,其中使用区域大气模型修改了岛屿的地形。两个灵敏度测试分别是平地测试(FL)和海洋测试(OC),前者将山地海拔修改为0米,后者将岛屿替换为海洋。降雨在登陆期间在CTL和FL中衰减迅速,且衰减速率基本相同。在这两次运行中,非绝热升温速率、行星边界层等效位温、切向风速和边界层入流的相似下降是眼壁击穿的特征,表明地表摩擦和较少的地表蒸发促进了击穿过程。相比之下,FL组眼壁恢复较CTL组早。山地地形造成的风-地相互作用可能会导致两坡恢复过程的差异。当“拉伊”进入南海后,两次气流强度迅速增强,与OC气流强度相当。研究还发现,在“拉伊”经过群岛前后观测到的风眼大小的显著变化并非由于地形的改变,而是由于OC运行中的风眼大小不断扩大。在Rai强度的第二峰阶段,CTL和FL组的TC大小比OC组小,这表明眼壁破坏的存在和不存在导致了这种差异。尽管眼壁在穿越岛屿后完全恢复,但TC尺寸的扩大受到抑制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Breakdown and recovery of the eyewall of Super Typhoon Rai (2021) crossing the Philippine Islands
To advance the comprehensive knowledge of the breakdown and recovery processes of tropical cyclones (TCs) that cross the Philippine Islands, we highlighted Super Typhoon Rai (2021)and performed a control (CTL) run and two sensitivity runs in which the topography of the islands was modified, using a regional atmospheric model. The two sensitivity runs consisted of the Flat Land (FL) run, in which the mountain elevation was modified to 0 m, and the Ocean (OC) run, in which the islands were replaced by the ocean. Rai attenuated rapidly in the CTL and FL runs during landfall, and its weakening rate was mostly the same between the two runs. In the two runs, similar decreases in the diabatic heating rate, equivalent potential temperature in the planetary boundary layer (PBL), tangential wind speed, and PBL inflow characterized the eyewall breakdown, suggesting that land surface friction and less surface evaporation facilitate the breakdown process. In contrast, the eyewall recovery was earlier in the FL run than in the CTL run. The wind-terrain interaction due to mountainous terrain may cause the differences in the recovery process between the two runs. When Rai entered the South China Sea, its intensity in the two runs was reinforced rapidly and became comparable to that in the OC run. It was also found that a distinctive change in the observed eye size before and after Rai passes through the islands is not due to the modification forced by the terrain because the eye size in the OC run expands continuously. At the second peak phase of Rai's intensity, the TC sizes in the CTL and FL runs were smaller than that in the OC run, implying that the presence and absence of the eyewall breakdown lead to such a difference. The expansion of the TC size was inhibited even though the eyewall recovered completely after crossing the islands.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Weather and Climate Extremes
Weather and Climate Extremes Earth and Planetary Sciences-Atmospheric Science
CiteScore
11.00
自引率
7.50%
发文量
102
审稿时长
33 weeks
期刊介绍: Weather and Climate Extremes Target Audience: Academics Decision makers International development agencies Non-governmental organizations (NGOs) Civil society Focus Areas: Research in weather and climate extremes Monitoring and early warning systems Assessment of vulnerability and impacts Developing and implementing intervention policies Effective risk management and adaptation practices Engagement of local communities in adopting coping strategies Information and communication strategies tailored to local and regional needs and circumstances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信