Bio-Design and Manufacturing最新文献

筛选
英文 中文
Enhanced wear resistance, antibacterial performance, and biocompatibility using nanotubes containing nano-Ag and bioceramics in vitro 利用含有纳米银的纳米管和体外生物陶瓷增强耐磨性、抗菌性能和生物相容性
IF 7.9 1区 医学
Bio-Design and Manufacturing Pub Date : 2024-07-11 DOI: 10.1007/s42242-024-00279-1
Qingge Wang, Jia Liu, Hong Wu, Jingbo Liu, Yaojia Ren, Luxin Liang, Xinxin Yan, Ian Baker, Shifeng Liu, V. V. Uglov, Chengliang Yang, Liqiang Wang
{"title":"Enhanced wear resistance, antibacterial performance, and biocompatibility using nanotubes containing nano-Ag and bioceramics in vitro","authors":"Qingge Wang, Jia Liu, Hong Wu, Jingbo Liu, Yaojia Ren, Luxin Liang, Xinxin Yan, Ian Baker, Shifeng Liu, V. V. Uglov, Chengliang Yang, Liqiang Wang","doi":"10.1007/s42242-024-00279-1","DOIUrl":"https://doi.org/10.1007/s42242-024-00279-1","url":null,"abstract":"<p>理想的钛基关节植入物应避免力屏蔽, 且具有良好的生物活性和抗感染性能。为满足这些要求, 研究人员以低弹性模量合金Ti–35Nb–2Ta–3Zr为基底, 采用阳极化、沉积和旋涂等方法制备含有生物陶瓷和银离子的功能涂层, 并将其涂覆在TiO<sub>2</sub>纳米管 ((80 ± 20) nm 和(150 ± 40) nm) 表面。研究了生物陶瓷 (nano-β-TCP, micro-HA, meso-CaSiO<sub>3</sub>) 和Ag纳米颗粒 ((50 ± 20) nm) 对纳米管的抗菌活性、摩擦、腐蚀和早期体外成骨行为的影响。摩擦和腐蚀结果表明, 磨损率和腐蚀速率与纳米管表面形貌密切相关。由于粘着磨损和磨粒磨损, 生物陶瓷micro-HA 表现出优异的耐磨性, 磨损率为(1.26 ± 0.06)×10<sup>–3</sup> mm<sup>3</sup>/(N m)。生物陶瓷meso-CaSiO<sub>3</sub>显示出良好的细胞粘附、增殖能力和碱性磷酸酶活性。含有纳米银的涂层具有良好的抗菌活性, 对大肠杆菌的抗菌率 ≥ 89.5%。研究结果表明, 该功能涂层具有加速成骨的潜力。</p>","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":"31 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141610234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A crosstalk-free dual-mode sweat sensing system for naked-eye sweat loss quantification via changes in structural reflectance 无串扰双模汗液传感系统,通过结构反射率的变化进行裸眼汗液损失量化
IF 7.9 1区 医学
Bio-Design and Manufacturing Pub Date : 2024-07-11 DOI: 10.1007/s42242-024-00294-2
Bowen Zhong, Hao Xu, Xiaokun Qin, Lingchen Liu, Hailong Wang, Lili Wang
{"title":"A crosstalk-free dual-mode sweat sensing system for naked-eye sweat loss quantification via changes in structural reflectance","authors":"Bowen Zhong, Hao Xu, Xiaokun Qin, Lingchen Liu, Hailong Wang, Lili Wang","doi":"10.1007/s42242-024-00294-2","DOIUrl":"https://doi.org/10.1007/s42242-024-00294-2","url":null,"abstract":"<p>Sweat loss monitoring is important for understanding the body’s thermoregulation and hydration status, as well as for comprehensive sweat analysis. Despite recent advances, developing a low-cost, scalable, and universal method for the fabrication of colorimetric microfluidics designed for sweat loss monitoring remains challenging. In this study, we propose a novel laser-engraved surface roughening strategy for various flexible substrates. This process permits the construction of microchannels that show distinct structural reflectance changes before and after sweat filling. By leveraging these unique optical properties, we have developed a fully laser-engraved microfluidic device for the quantification of naked-eye sweat loss. This sweat loss sensor is capable of a volume resolution of 0.5 μL and a total volume capacity of 11 μL, and can be customized to meet different performance requirements. Moreover, we report the development of a crosstalk-free dual-mode sweat microfluidic system that integrates an Ag/AgCl chloride sensor and a matching wireless measurement flexible printed circuit board. This integrated system enables the real-time monitoring of colorimetric sweat loss signals and potential ion concentration signals without crosstalk. Finally, we demonstrate the potential practical use of this microfluidic sweat loss sensor and its integrated system for sports medicine via on-body studies.</p><h3 data-test=\"abstract-sub-heading\">Graphic abstract</h3>\u0000","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":"54 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141588053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A mixed-coordination electron trapping-enabled high-precision touch-sensitive screen for wearable devices 用于可穿戴设备的混合配位电子陷阱式高精度触摸屏
IF 7.9 1区 医学
Bio-Design and Manufacturing Pub Date : 2024-07-10 DOI: 10.1007/s42242-024-00293-3
Xi Zhang, Junchi Ma, Hualin Deng, Jinming Zhong, Kaichen Xu, Qiang Wu, Bo Wen, Dongfeng Diao
{"title":"A mixed-coordination electron trapping-enabled high-precision touch-sensitive screen for wearable devices","authors":"Xi Zhang, Junchi Ma, Hualin Deng, Jinming Zhong, Kaichen Xu, Qiang Wu, Bo Wen, Dongfeng Diao","doi":"10.1007/s42242-024-00293-3","DOIUrl":"https://doi.org/10.1007/s42242-024-00293-3","url":null,"abstract":"<p>Touch-sensitive screens are crucial components of wearable devices. Materials such as reduced graphene oxide (rGO), carbon nanotubes (CNTs), and graphene offer promising solutions for flexible touch-sensitive screens. However, when stacked with flexible substrates to form multilayered capacitive touching sensors, these materials often suffer from substrate delamination in response to deformation; this is due to the materials having different Young’s modulus values. Delamination results in failure to offer accurate touch screen recognition. In this work, we demonstrate an induced charge-based mutual capacitive touching sensor capable of high-precision touch sensing. This is enabled by electron trapping and polarization effects related to mixed-coordinated bonding between copper nanoparticles and vertically grown graphene nanosheets. Here, we used an electron cyclotron resonance system to directly fabricate graphene–metal nanofilms (GMNFs) using carbon and copper, which are firmly adhered to flexible substrates. After being subjected to 3000 bending actions, we observed almost no change in touch sensitivity. The screen interaction system, which has a signal-to-noise ratio of 41.16 dB and resolution of 650 dpi, was tested using a handwritten Chinese character recognition trial and achieved an accuracy of 94.82%. Taken together, these results show the promise of touch-sensitive screens that use directly fabricated GMNFs for wearable devices.</p><h3 data-test=\"abstract-sub-heading\">Graphic abstract</h3>","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":"18 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141588052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nacre-inspired MXene-based film for highly sensitive piezoresistive sensing over a broad sensing range 在宽传感范围内实现高灵敏度压阻传感的珍珠层启发型 MXene 基薄膜
IF 7.9 1区 医学
Bio-Design and Manufacturing Pub Date : 2024-07-02 DOI: 10.1007/s42242-024-00292-4
Gaofeng Wang, Lingxian Meng, Xinyi Ji, Xuying Liu, Jiajie Liang, Shuiren Liu
{"title":"Nacre-inspired MXene-based film for highly sensitive piezoresistive sensing over a broad sensing range","authors":"Gaofeng Wang, Lingxian Meng, Xinyi Ji, Xuying Liu, Jiajie Liang, Shuiren Liu","doi":"10.1007/s42242-024-00292-4","DOIUrl":"https://doi.org/10.1007/s42242-024-00292-4","url":null,"abstract":"<p>As the main component of wearable electronic equipment, flexible pressure sensors have attracted wide attention due to their excellent sensitivity and their promise with respect to applications in health monitoring, electronic skin, and human–computer interactions. However, it remains a significant challenge to achieve epidermal sensing over a wide sensing range, with short response/recovery time and featuring seamless conformability to the skin simultaneously. This is critical since the capture of minute electrophysiological signals is important for health care applications. In this paper, we report the preparation of a nacre-like MXene/sodium carboxymethyl cellulose (CMC) nanocomposite film with a “brick-and-mortar” interior structure using a vacuum-induced self-assembly strategy. The synergistic behavior of the MXene “brick” and flexible CMC “mortar” contributes to attenuating interlamellar self-stacking and creates numerous variable conductive pathways on the sensing film. This resulted in a high sensitivity over a broad pressure range (i.e., 0.03–22.37 kPa: 162.13 kPa<sup>−1</sup>; 22.37–135.71 kPa: 127.88 kPa<sup>−1</sup>; 135.71–286.49 kPa: 100.58 kPa<sup>−1</sup>). This sensor also has a low detection limit (0.85 Pa), short response/recovery time (8.58 ms/34.34 ms), and good stability (2000 cycles). Furthermore, we deployed pressure sensors to distinguish among tiny particles, various physiological signals of the human body, space arrays, robot motion monitoring, and other related applications to demonstrate their feasibility for a variety of health and motion monitoring use cases.</p><h3 data-test=\"abstract-sub-heading\">Graphic abstract</h3>\u0000","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":"240 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141522439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implantable probe with integrated reference electrode for in situ neural signal and calcium ion monitoring 带集成参比电极的植入式探针,用于现场神经信号和钙离子监测
IF 7.9 1区 医学
Bio-Design and Manufacturing Pub Date : 2024-07-01 DOI: 10.1007/s42242-024-00283-5
Junyu Xiao, Mengfei Xu, Longchun Wang, Bin Yang, Jingquan Liu
{"title":"Implantable probe with integrated reference electrode for in situ neural signal and calcium ion monitoring","authors":"Junyu Xiao, Mengfei Xu, Longchun Wang, Bin Yang, Jingquan Liu","doi":"10.1007/s42242-024-00283-5","DOIUrl":"https://doi.org/10.1007/s42242-024-00283-5","url":null,"abstract":"<p>监测神经元的电生理活动和血液中的钙离子可以帮助人们更好地了解与疾病相 关的神经系统回路。然而,当前原位钙离子监测工具很少,且大多集成度低、灵 敏度有限。本文提出一种集成原位Ag/AgCl 参比电极(ISA/ARE)的植入式探针, 该探针可以监测动作电位(AP)和Ca<sup>2+</sup>浓度。实验结果表明,Ca<sup>2+</sup>传感器的灵敏 度可达100.7 mV/decade,其在干扰物实验中呈现良好的选择性。本研究通过铂 黑修饰的12 个电生理电极记录到了神经元的AP,而当将CaCl<sub>2</sub> 溶液重复微注射 到大脑的CA1 区域时,Ca<sup>2+</sup>传感器则观察到神经元的可逆电位变化。上述结果 表明,该探针能够满足电生理信号和离子浓度同步监测的需求,加深人们对神经 回路的理解,促进脑科学的发展。</p>","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":"18 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible, high-density, laminated ECoG electrode array for high spatiotemporal resolution foci diagnostic localization of refractory epilepsy 用于难治性癫痫高时空分辨率病灶诊断定位的灵活、高密度、层叠式心电图电极阵列
IF 7.9 1区 医学
Bio-Design and Manufacturing Pub Date : 2024-06-17 DOI: 10.1007/s42242-024-00278-2
Yafeng Liu, Zhouheng Wang, Yang Jiao, Ying Chen, Guangyuan Xu, Yinji Ma, Xue Feng
{"title":"Flexible, high-density, laminated ECoG electrode array for high spatiotemporal resolution foci diagnostic localization of refractory epilepsy","authors":"Yafeng Liu, Zhouheng Wang, Yang Jiao, Ying Chen, Guangyuan Xu, Yinji Ma, Xue Feng","doi":"10.1007/s42242-024-00278-2","DOIUrl":"https://doi.org/10.1007/s42242-024-00278-2","url":null,"abstract":"<p>High spatiotemporal resolution brain electrical signals are critical for basic neuroscience research and high-precision focus diagnostic localization, as the spatial scale of some pathologic signals is at the submillimeter or micrometer level. This entails connecting hundreds or thousands of electrode wires on a limited surface. This study reported a class of flexible, ultrathin, high-density electrocorticogram (ECoG) electrode arrays. The challenge of a large number of wiring arrangements was overcome by a laminated structure design and processing technology improvement. The flexible, ultrathin, high-density ECoG electrode array was conformably attached to the cortex for reliable, high spatial resolution electrophysiologic recordings. The minimum spacing between electrodes was 15 μm, comparable to the diameter of a single neuron. Eight hundred electrodes were prepared with an electrode density of 4444 mm<sup>−2</sup>. In focal epilepsy surgery, the flexible, high-density, laminated ECoG electrode array with 36 electrodes was applied to collect epileptic spike waves in rabbits, improving the positioning accuracy of epilepsy lesions from the centimeter to the submillimeter level. The flexible, high-density, laminated ECoG electrode array has potential clinical applications in intractable epilepsy and other neurologic diseases requiring high-precision electroencephalogram acquisition.</p>","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":"38 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly sensitive ratiometric fluorescent fiber matrices for oxygen sensing with micrometer spatial resolution 用于氧传感的高灵敏度比率荧光纤维矩阵,具有微米级空间分辨率
IF 7.9 1区 医学
Bio-Design and Manufacturing Pub Date : 2024-04-29 DOI: 10.1007/s42242-024-00277-3
Giuliana Grasso, Valentina Onesto, Stefania Forciniti, Eliana D’Amone, Francesco Colella, Lara Pierantoni, Valeria Famà, Giuseppe Gigli, Rui L. Reis, Joaquim M. Oliveira, Loretta L. del Mercato
{"title":"Highly sensitive ratiometric fluorescent fiber matrices for oxygen sensing with micrometer spatial resolution","authors":"Giuliana Grasso, Valentina Onesto, Stefania Forciniti, Eliana D’Amone, Francesco Colella, Lara Pierantoni, Valeria Famà, Giuseppe Gigli, Rui L. Reis, Joaquim M. Oliveira, Loretta L. del Mercato","doi":"10.1007/s42242-024-00277-3","DOIUrl":"https://doi.org/10.1007/s42242-024-00277-3","url":null,"abstract":"<p>Oxygen (O<sub>2</sub>)-sensing matrices are promising tools for the live monitoring of extracellular O<sub>2</sub> consumption levels in long-term cell cultures. In this study, ratiometric O<sub>2</sub>-sensing membranes were prepared by electrospinning, an easy, low-cost, scalable, and robust method for fabricating nanofibers. Poly(ε-caprolactone) and poly(dimethyl)siloxane polymers were blended with tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) dichloride, which was used as the O<sub>2</sub>-sensing probe, and rhodamine B isothiocyanate, which was used as the reference dye. The functionalized scaffolds were morphologically characterized by scanning electron microscopy, and their physicochemical profiles were obtained by Fourier transform infrared spectroscopy, thermogravimetric analysis, and water contact angle measurement. The sensing capabilities were investigated by confocal laser scanning microscopy, performing photobleaching, reversibility, and calibration curve studies toward different dissolved O<sub>2</sub> (DO) concentrations. Electrospun sensing nanofibers showed a high response to changes in DO concentrations in the physiological-pathological range from 0.5 to 20% and good stability under ratiometric imaging. In addition, the sensing systems were highly biocompatible for cell growth promoting adhesiveness and growth of three cancer cell lines, namely metastatic melanoma cell line SK-MEL2, breast cancer cell line MCF-7, and pancreatic ductal adenocarcinoma cell line Panc-1, thus recreating a suitable biological environment in vitro<i>.</i> These O<sub>2</sub>-sensing biomaterials can potentially measure alterations in cell metabolism caused by changes in ambient O<sub>2</sub> content during drug testing/validation and tissue regeneration processes.</p><h3 data-test=\"abstract-sub-heading\">Graphic abstract</h3>\u0000","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":"73 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140809114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovation leading development: a glimpse into three-dimensional bioprinting in Israel 创新引领发展:以色列三维生物打印技术一瞥
IF 7.9 1区 医学
Bio-Design and Manufacturing Pub Date : 2024-04-29 DOI: 10.1007/s42242-024-00275-5
Lujing Gao, Zixuan Liu, Daniel Dikovsky, Jiqian Wang, Deqing Mei, Lihi Adler-Abramovich, Ehud Gazit, Kai Tao
{"title":"Innovation leading development: a glimpse into three-dimensional bioprinting in Israel","authors":"Lujing Gao, Zixuan Liu, Daniel Dikovsky, Jiqian Wang, Deqing Mei, Lihi Adler-Abramovich, Ehud Gazit, Kai Tao","doi":"10.1007/s42242-024-00275-5","DOIUrl":"https://doi.org/10.1007/s42242-024-00275-5","url":null,"abstract":"<p>Three-dimensional (3D) printing has attracted increasing research interest as an emerging manufacturing technology for developing sophisticated and exquisite architecture through hierarchical printing. It has also been employed in various advanced industrial areas. The development of intelligent biomedical engineering has raised the requirements for 3D printing, such as flexible manufacturing processes and technologies, biocompatible constituents, and alternative bioproducts. However, state-of-the-art 3D printing mainly involves inorganics or polymers and generally focuses on traditional industrial fields, thus severely limiting applications demanding biocompatibility and biodegradability. In this regard, peptide architectonics, which are self-assembled by programmed amino acid sequences that can be flexibly functionalized, have shown promising potential as bioinspired inks for 3D printing. Therefore, the combination of 3D printing and peptide self-assembly potentially opens up an alternative avenue of 3D bioprinting for diverse advanced applications. Israel, a small but innovative nation, has significantly contributed to 3D bioprinting in terms of scientific studies, marketization, and peptide architectonics, including modulations and applications, and ranks as a leading area in the 3D bioprinting field. This review summarizes the recent progress in 3D bioprinting in Israel, focusing on scientific studies on printable components, soft devices, and tissue engineering. This paper further delves into the manufacture of industrial products, such as artificial meats and bioinspired supramolecular architectures, and the mechanisms, physicochemical properties, and applications of peptide self-assembly. Undoubtedly, Israel contributes significantly to the field of 3D bioprinting and should thus be appropriately recognized.</p><h3 data-test=\"abstract-sub-heading\">Graphic abstract</h3>\u0000","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":"5 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140809288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spheroid construction strategies and application in 3D bioprinting 球体构建策略及在三维生物打印中的应用
IF 7.9 1区 医学
Bio-Design and Manufacturing Pub Date : 2024-04-16 DOI: 10.1007/s42242-024-00273-7
Chunxiang Lu, Chuang Gao, Hao Qiao, Yi Zhang, Huazhen Liu, Aoxiang Jin, Yuanyuan Liu
{"title":"Spheroid construction strategies and application in 3D bioprinting","authors":"Chunxiang Lu, Chuang Gao, Hao Qiao, Yi Zhang, Huazhen Liu, Aoxiang Jin, Yuanyuan Liu","doi":"10.1007/s42242-024-00273-7","DOIUrl":"https://doi.org/10.1007/s42242-024-00273-7","url":null,"abstract":"<p>Tissue engineering has been striving toward designing and producing natural and functional human tissues. Cells are the fundamental building blocks of tissues. Compared with traditional two-dimensional cultured cells, cell spheres are three-dimensional (3D) structures that can naturally form complex cell–cell and cell–matrix interactions. This structure is close to the natural environment of cells in living organisms. In addition to being used in disease modeling and drug screening, spheroids have significant potential in tissue regeneration. The 3D bioprinting is an advanced biofabrication technique. It accurately deposits bioinks into predesigned 3D shapes to create complex tissue structures. Although 3D bioprinting is efficient, the time required for cells to develop into complex tissue structures can be lengthy. The 3D bioprinting of spheroids significantly reduces the time required for their development into large tissues/organs during later cultivation stages by printing them with high cell density. Combining spheroid fabrication and bioprinting technology should provide a new solution to many problems in regenerative medicine. This paper systematically elaborates and analyzes the spheroid fabrication methods and 3D bioprinting strategies by introducing spheroids as building blocks. Finally, we present the primary challenges faced by spheroid fabrication and 3D bioprinting with future requirements and some recommendations.</p><h3 data-test=\"abstract-sub-heading\">Graphic abstract</h3>","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":"188 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140614371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxygen tension modulates cell function in an in vitro three-dimensional glioblastoma tumor model 氧张力调节体外三维胶质母细胞瘤肿瘤模型中的细胞功能
IF 7.9 1区 医学
Bio-Design and Manufacturing Pub Date : 2024-04-13 DOI: 10.1007/s42242-024-00271-9
Sen Wang, Siqi Yao, Na Pei, Luge Bai, Zhiyan Hao, Dichen Li, Jiankang He, J. Miguel Oliveira, Xiaoyan Xue, Ling Wang, Xinggang Mao
{"title":"Oxygen tension modulates cell function in an in vitro three-dimensional glioblastoma tumor model","authors":"Sen Wang, Siqi Yao, Na Pei, Luge Bai, Zhiyan Hao, Dichen Li, Jiankang He, J. Miguel Oliveira, Xiaoyan Xue, Ling Wang, Xinggang Mao","doi":"10.1007/s42242-024-00271-9","DOIUrl":"https://doi.org/10.1007/s42242-024-00271-9","url":null,"abstract":"<p>Hypoxia is a typical feature of the tumor microenvironment, one of the most critical factors affecting cell behavior and tumor progression. However, the lack of tumor models able to precisely emulate natural brain tumor tissue has impeded the study of the effects of hypoxia on the progression and growth of tumor cells. This study reports a three-dimensional (3D) brain tumor model obtained by encapsulating U87MG (U87) cells in a hydrogel containing type I collagen. It also documents the effect of various oxygen concentrations (1%, 7%, and 21%) in the culture environment on U87 cell morphology, proliferation, viability, cell cycle, apoptosis rate, and migration. Finally, it compares two-dimensional (2D) and 3D cultures. For comparison purposes, cells cultured in flat culture dishes were used as the control (2D model). Cells cultured in the 3D model proliferated more slowly but had a higher apoptosis rate and proportion of cells in the resting phase (G0 phase)/gap I phase (G1 phase) than those cultured in the 2D model. Besides, the two models yielded significantly different cell morphologies. Finally, hypoxia (e.g., 1% O<sub>2</sub>) affected cell morphology, slowed cell growth, reduced cell viability, and increased the apoptosis rate in the 3D model. These results indicate that the constructed 3D model is effective for investigating the effects of biological and chemical factors on cell morphology and function, and can be more representative of the tumor microenvironment than 2D culture systems. The developed 3D glioblastoma tumor model is equally applicable to other studies in pharmacology and pathology.</p><h3 data-test=\"abstract-sub-heading\">Graphic abstract</h3>\u0000","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":"13 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140591571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信