Bio-Design and Manufacturing最新文献

筛选
英文 中文
Ink-structing the future of vascular tissue engineering: a review of the physiological bioink design 墨水构建血管组织工程的未来:生理生物墨水设计综述
IF 7.9 1区 医学
Bio-Design and Manufacturing Pub Date : 2024-03-07 DOI: 10.1007/s42242-024-00270-w
Judith Synofzik, Sebastian Heene, Rebecca Jonczyk, Cornelia Blume
{"title":"Ink-structing the future of vascular tissue engineering: a review of the physiological bioink design","authors":"Judith Synofzik, Sebastian Heene, Rebecca Jonczyk, Cornelia Blume","doi":"10.1007/s42242-024-00270-w","DOIUrl":"https://doi.org/10.1007/s42242-024-00270-w","url":null,"abstract":"<p>Three-dimensional (3D) printing and bioprinting have come into view for a plannable and standardizable generation of implantable tissue-engineered constructs that can substitute native tissues and organs. These tissue-engineered structures are intended to integrate with the patient’s body. Vascular tissue engineering (TE) is relevant in TE because it supports the sustained oxygenization and nutrition of all tissue-engineered constructs. Bioinks have a specific role, representing the necessary medium for printability and vascular cell growth. This review aims to understand the requirements for the design of vascular bioinks. First, an in-depth analysis of vascular cell interaction with their native environment must be gained. A physiological bioink suitable for a tissue-engineered vascular graft (TEVG) must not only ensure good printability but also induce cells to behave like in a native vascular vessel, including self-regenerative and growth functions. This review describes the general structure of vascular walls with wall-specific cell and extracellular matrix (ECM) components and biomechanical properties and functions. Furthermore, the physiological role of vascular ECM components for their interaction with vascular cells and the mode of interaction is introduced. Diverse currently available or imaginable bioinks are described from physiological matrix proteins to nonphysiologically occurring but natural chemical compounds useful for vascular bioprinting. The physiological performance of these bioinks is evaluated with regard to biomechanical properties postprinting, with a view to current animal studies of 3D printed vascular structures. Finally, the main challenges for further bioink development, suitable bioink components to create a self-assembly bioink concept, and future bioprinting strategies are outlined. These concepts are discussed in terms of their suitability to be part of a TEVG with a high potential for later clinical use.</p>","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":"20 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140055161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biofabrication of nanocomposite-based scaffolds containing human bone extracellular matrix for the differentiation of skeletal stem and progenitor cells 含有人骨细胞外基质的纳米复合材料支架的生物制造,用于骨骼干细胞和祖细胞的分化
IF 7.9 1区 医学
Bio-Design and Manufacturing Pub Date : 2024-03-05 DOI: 10.1007/s42242-023-00265-z
Yang-Hee Kim, Janos M. Kanczler, Stuart Lanham, Andrew Rawlings, Marta Roldo, Gianluca Tozzi, Jonathan I. Dawson, Gianluca Cidonio, Richard O. C. Oreffo
{"title":"Biofabrication of nanocomposite-based scaffolds containing human bone extracellular matrix for the differentiation of skeletal stem and progenitor cells","authors":"Yang-Hee Kim, Janos M. Kanczler, Stuart Lanham, Andrew Rawlings, Marta Roldo, Gianluca Tozzi, Jonathan I. Dawson, Gianluca Cidonio, Richard O. C. Oreffo","doi":"10.1007/s42242-023-00265-z","DOIUrl":"https://doi.org/10.1007/s42242-023-00265-z","url":null,"abstract":"<p>Autograft or metal implants are routinely used in skeletal repair. However, they fail to provide long-term clinical resolution, necessitating a functional biomimetic tissue engineering alternative. The use of native human bone tissue for synthesizing a biomimetic material ink for three-dimensional (3D) bioprinting of skeletal tissue is an attractive strategy for tissue regeneration. Thus, human bone extracellular matrix (bone-ECM) offers an exciting potential for the development of an appropriate microenvironment for human bone marrow stromal cells (HBMSCs) to proliferate and differentiate along the osteogenic lineage. In this study, we engineered a novel material ink (LAB) by blending human bone-ECM (B) with nanoclay (L, Laponite<sup>®</sup>) and alginate (A) polymers using extrusion-based deposition. The inclusion of the nanofiller and polymeric material increased the rheology, printability, and drug retention properties and, critically, the preservation of HBMSCs viability upon printing. The composite of human bone-ECM-based 3D constructs containing vascular endothelial growth factor (VEGF) enhanced vascularization after implantation in an ex vivo chick chorioallantoic membrane (CAM) model. The inclusion of bone morphogenetic protein-2 (BMP-2) with the HBMSCs further enhanced vascularization and mineralization after only seven days. This study demonstrates the synergistic combination of nanoclay with biomimetic materials (alginate and bone-ECM) to support the formation of osteogenic tissue both in vitro and ex vivo and offers a promising novel 3D bioprinting approach to personalized skeletal tissue repair.</p><h3 data-test=\"abstract-sub-heading\">Graphic abstract</h3>\u0000","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":"18 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140035598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Additive manufactured osseointegrated screws with hierarchical design 分层设计的添加剂制造骨结合螺钉
IF 7.9 1区 医学
Bio-Design and Manufacturing Pub Date : 2024-03-01 DOI: 10.1007/s42242-024-00269-3
Wenbo Yang, Hao Chen, Haotian Bai, Yifu Sun, Aobo Zhang, Yang Liu, Yuchao Song, Qing Han, Jincheng Wang
{"title":"Additive manufactured osseointegrated screws with hierarchical design","authors":"Wenbo Yang, Hao Chen, Haotian Bai, Yifu Sun, Aobo Zhang, Yang Liu, Yuchao Song, Qing Han, Jincheng Wang","doi":"10.1007/s42242-024-00269-3","DOIUrl":"https://doi.org/10.1007/s42242-024-00269-3","url":null,"abstract":"<p>Bone screws are devices used to fix implants or bones to bones. However, conventional screws are mechanically fixed with thread and often face long-term failure due to poor osseointegration. To improve osseointegration, screws are evolving from solid and smooth to porous and rough. Additive manufacturing (AM) offers a high degree of manufacturing freedom, enabling the preparation of predesigned screws that are porous and rough. This paper provides an overview of the problems currently faced by bone screws: long-term loosening and screw breakage. Next, advances in osseointegrated screws are summarized hierarchically (sub-micro, micro, and macro). At the sub-microscale level, we describe surface-modification techniques for enhancing osseointegration. At the micro level, we summarize the micro-design parameters that affect the mechanical and biological properties of porous osseointegrated screws, including porosity, pore size, and pore shape. In addition, we highlight three promising pore shapes: triply periodic minimal surface, auxetic structure with negative Poisson ratio, and the Voronoi structure. At the macro level, we outline the strategies of graded design, gradient design, and topology optimization design to improve the mechanical strength of porous osseointegrated screws. Simultaneously, this paper outlines advances in AM technology for enhancing the mechanical properties of porous osseointegrated screws. AM osseointegrated screws with hierarchical design are expected to provide excellent long-term fixation and the required mechanical strength.</p><h3 data-test=\"abstract-sub-heading\">Graphic abstract</h3>\u0000","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":"8 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140007973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ag-doped CNT/HAP nanohybrids in a PLLA bone scaffold show significant antibacterial activity 聚乳酸骨支架中的掺银 CNT/HAP 纳米杂化物显示出显著的抗菌活性
IF 7.9 1区 医学
Bio-Design and Manufacturing Pub Date : 2024-02-27 DOI: 10.1007/s42242-023-00264-0
Cijun Shuai, Xiaoxin Shi, Kai Wang, Yulong Gu, Feng Yang, Pei Feng
{"title":"Ag-doped CNT/HAP nanohybrids in a PLLA bone scaffold show significant antibacterial activity","authors":"Cijun Shuai, Xiaoxin Shi, Kai Wang, Yulong Gu, Feng Yang, Pei Feng","doi":"10.1007/s42242-023-00264-0","DOIUrl":"https://doi.org/10.1007/s42242-023-00264-0","url":null,"abstract":"<p>Bacterial infection is a major problem following bone implant surgery. Moreover, poly-<span>l</span>-lactic acid/carbon nanotube/hydroxyapatite (PLLA/CNT/HAP) bone scaffolds possess enhanced mechanical properties and show good bioactivity regarding bone defect regeneration. In this study, we synthesized silver (Ag)-doped CNT/HAP (CNT/Ag-HAP) nanohybrids via the partial replacing of calcium ions (Ca<sup>2+</sup>) in the HAP lattice with silver ions (Ag<sup>+</sup>) using an ion doping technique under hydrothermal conditions. Specifically, the doping process was induced using the special lattice structure of HAP and the abundant surface oxygenic functional groups of CNT, and involved the partial replacement of Ca<sup>2+</sup> in the HAP lattice by doped Ag<sup>+</sup> as well as the in situ synthesis of Ag-HAP nanoparticles on CNT in a hydrothermal environment. The resulting CNT/Ag-HAP nanohybrids were then introduced into a PLLA matrix via laser-based powder bed fusion (PBF-LB) to fabricate PLLA/CNT/Ag-HAP scaffolds that showed sustained antibacterial activity. We then found that Ag<sup>+</sup>, which possesses broad-spectrum antibacterial activity, endowed PLLA/CNT/Ag-HAP scaffolds with this activity, with an antibacterial effectiveness of 92.65%. This antibacterial effect is due to the powerful effect of Ag<sup>+</sup> against bacterial structure and genetic material, as well as the physical destruction of bacterial structures due to the sharp edge structure of CNT. In addition, the scaffold possessed enhanced mechanical properties, showing tensile and compressive strengths of 8.49 MPa and 19.72 MPa, respectively. Finally, the scaffold also exhibited good bioactivity and cytocompatibility, including the ability to form apatite layers and to promote the adhesion and proliferation of human osteoblast-like cells (MG63 cells).</p><h3 data-test=\"abstract-sub-heading\">Graphic abstract</h3>","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":"46 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140007979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wearable multilead ECG sensing systems using on-skin stretchable and breathable dry adhesives 使用皮肤可拉伸透气干粘合剂的可穿戴多导联心电图传感系统
IF 7.9 1区 医学
Bio-Design and Manufacturing Pub Date : 2024-02-25 DOI: 10.1007/s42242-023-00268-w
Yingxi Xie, Longsheng Lu, Wentao Wang, Huan Ma
{"title":"Wearable multilead ECG sensing systems using on-skin stretchable and breathable dry adhesives","authors":"Yingxi Xie, Longsheng Lu, Wentao Wang, Huan Ma","doi":"10.1007/s42242-023-00268-w","DOIUrl":"https://doi.org/10.1007/s42242-023-00268-w","url":null,"abstract":"<p>Electrocardiogram (ECG) monitoring is used to diagnose cardiovascular diseases, for which wearable electronics have attracted much attention due to their lightweight, comfort, and long-term use. This study developed a wearable multilead ECG sensing system with on-skin stretchable and conductive silver (Ag)-coated fiber/silicone (AgCF-S) dry adhesives. Tangential and normal adhesion to pigskin (0.43 and 0.20 N/cm<sup>2</sup>, respectively) was optimized by the active control of fiber density and mixing ratio, resulting in close contact in the electrode–skin interface. The breathable AgCF-S dry electrode was nonallergenic after continuous fit for 24 h and can be reused/cleaned (&gt;100 times) without loss of adhesion. The AgCF encapsulated inside silicone elastomers was overlapped to construct a dynamic network under repeated stretching (10% strain) and bending (90°) deformations, enabling small intrinsic impedance (0.3 Ω, 0.1 Hz) and contact impedance variation (0.7 kΩ) in high-frequency vibration (70 Hz). All hard/soft modules of the multilead ECG system were integrated into lightweight clothing and equipped with wireless transmission for signal visualization. By synchronous acquisition of I–III, aVR, aVL, aVF, and V4 lead data, the multilead ECG sensing system was suitable for various scenarios, such as exercise, rest, and sleep, with extremely high signal-to-noise ratios.</p><h3 data-test=\"abstract-sub-heading\">Graphic abstract</h3>","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":"78 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139969249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dissolvable temporary barrier: a novel paradigm for flexible hydrogel patterning in organ-on-a-chip models 可溶解性临时屏障:在芯片上器官模型中进行柔性水凝胶图案化的新范例
IF 7.9 1区 医学
Bio-Design and Manufacturing Pub Date : 2024-02-23 DOI: 10.1007/s42242-023-00267-x
Ding Wang, Qinyu Li, Chenyang Zhou, Zhangjie Li, Kangyi Lu, Yijun Liu, Lian Xuan, Xiaolin Wang
{"title":"Dissolvable temporary barrier: a novel paradigm for flexible hydrogel patterning in organ-on-a-chip models","authors":"Ding Wang, Qinyu Li, Chenyang Zhou, Zhangjie Li, Kangyi Lu, Yijun Liu, Lian Xuan, Xiaolin Wang","doi":"10.1007/s42242-023-00267-x","DOIUrl":"https://doi.org/10.1007/s42242-023-00267-x","url":null,"abstract":"<p>A combination of hydrogels and microfluidics allows the construction of biomimetic three-dimensional (3D) tissue models in vitro, which are also known as organ-on-a-chip models. The hydrogel patterning with a well-controlled spatial distribution is typically achieved by embedding sophisticated microstructures to act as a boundary. However, these physical barriers inevitably expose cells/tissues to a less physiologically relevant microenvironment than in vivo conditions. Herein, we present a novel dissolvable temporary barrier (DTB) strategy that allows robust and flexible hydrogel patterning with great freedom of design and desirable flow stimuli for cellular hydrogels. The key aspect of this approach is the patterning of a water-soluble rigid barrier as a guiding path for the hydrogel using stencil printing technology, followed by a barrier-free medium perfusion after the dissolution of the DTB. Single and multiple tissue compartments with different geometries can be established using either straight or curved DTB structures. The effectiveness of this strategy is further validated by generating a 3D vascular network through vasculogenesis and angiogenesis using a vascularized microtumor model. As a new proof-of-concept in vasculature-on-a-chip, DTB enables seamless contact between the hydrogel and the culture medium in closed microdevices, which is an improved protocol for the fabrication of multiorgan chips. Therefore, we expect it to serve as a promising paradigm for organ-on-a-chip devices for the development of tumor vascularization and drug evaluation in the future preclinical studies.</p><h3 data-test=\"abstract-sub-heading\">Graphic abstract</h3>","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":"18 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139945606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep brain implantable microelectrode arrays for detection and functional localization of the subthalamic nucleus in rats with Parkinson’s disease 用于检测帕金森病大鼠丘脑下核并对其进行功能定位的脑深部植入式微电极阵列
IF 7.9 1区 医学
Bio-Design and Manufacturing Pub Date : 2024-02-22 DOI: 10.1007/s42242-023-00266-y
Luyi Jing, Zhaojie Xu, Penghui Fan, Botao Lu, Fan Mo, Ruilin Hu, Wei Xu, Jin Shan, Qianli Jia, Yuxin Zhu, Yiming Duan, Mixia Wang, Yirong Wu, Xinxia Cai
{"title":"Deep brain implantable microelectrode arrays for detection and functional localization of the subthalamic nucleus in rats with Parkinson’s disease","authors":"Luyi Jing, Zhaojie Xu, Penghui Fan, Botao Lu, Fan Mo, Ruilin Hu, Wei Xu, Jin Shan, Qianli Jia, Yuxin Zhu, Yiming Duan, Mixia Wang, Yirong Wu, Xinxia Cai","doi":"10.1007/s42242-023-00266-y","DOIUrl":"https://doi.org/10.1007/s42242-023-00266-y","url":null,"abstract":"<p>The subthalamic nucleus (STN) is considered the best target for deep brain stimulation treatments of Parkinson’s disease (PD). It is difficult to localize the STN due to its small size and deep location. Multichannel microelectrode arrays (MEAs) can rapidly and precisely locate the STN, which is important for precise stimulation. In this paper, 16-channel MEAs modified with multiwalled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (MWCNT/PEDOT:PSS) nanocomposites were designed and fabricated, and the accurate and rapid identification of the STN in PD rats was performed using detection sites distributed at different brain depths. These results showed that nuclei in 6-hydroxydopamine hydrobromide (6-OHDA)-lesioned brains discharged more intensely than those in unlesioned brains. In addition, the MEA simultaneously acquired neural signals from both the STN and the upper or lower boundary nuclei of the STN. Moreover, higher values of spike firing rate, spike amplitude, local field potential (LFP) power, and beta oscillations were detected in the STN of the 6-OHDA-lesioned brain, and may therefore be biomarkers of STN localization. Compared with the STNs of unlesioned brains, the power spectral density of spikes and LFPs synchronously decreased in the delta band and increased in the beta band of 6-OHDA-lesioned brains. This may be a cause of sleep and motor disorders associated with PD. Overall, this work describes a new cellular-level localization and detection method and provides a tool for future studies of deep brain nuclei.</p><h3 data-test=\"abstract-sub-heading\">Graphic abstract</h3>","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":"22 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139925944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biofabrication and biomanufacturing in Ireland and the UK.
IF 8.1 1区 医学
Bio-Design and Manufacturing Pub Date : 2024-01-01 Epub Date: 2024-10-23 DOI: 10.1007/s42242-024-00316-z
Jack F Murphy, Martha Lavelle, Lisa Asciak, Ross Burdis, Hannah J Levis, Cosimo Ligorio, Jamie McGuire, Marlene Polleres, Poppy O Smith, Lucinda Tullie, Juan Uribe-Gomez, Biqiong Chen, Jonathan I Dawson, Julien E Gautrot, Nigel M Hooper, Daniel J Kelly, Vivian S W Li, Alvaro Mata, Abhay Pandit, James B Phillips, Wenmiao Shu, Molly M Stevens, Rachel L Williams, James P K Armstrong, Yan Yan Shery Huang
{"title":"Biofabrication and biomanufacturing in Ireland and the UK.","authors":"Jack F Murphy, Martha Lavelle, Lisa Asciak, Ross Burdis, Hannah J Levis, Cosimo Ligorio, Jamie McGuire, Marlene Polleres, Poppy O Smith, Lucinda Tullie, Juan Uribe-Gomez, Biqiong Chen, Jonathan I Dawson, Julien E Gautrot, Nigel M Hooper, Daniel J Kelly, Vivian S W Li, Alvaro Mata, Abhay Pandit, James B Phillips, Wenmiao Shu, Molly M Stevens, Rachel L Williams, James P K Armstrong, Yan Yan Shery Huang","doi":"10.1007/s42242-024-00316-z","DOIUrl":"10.1007/s42242-024-00316-z","url":null,"abstract":"<p><p>As we navigate the transition from the Fourth to the Fifth Industrial Revolution, the emerging fields of biomanufacturing and biofabrication are transforming life sciences and healthcare. These sectors are benefiting from a synergy of synthetic and engineering biology, sustainable manufacturing, and integrated design principles. Advanced techniques such as 3D bioprinting, tissue engineering, directed assembly, and self-assembly are instrumental in creating biomimetic scaffolds, tissues, organoids, medical devices, and biohybrid systems. The field of biofabrication in the United Kingdom and Ireland is emerging as a pivotal force in bioscience and healthcare, propelled by cutting-edge research and development. Concentrating on the production of biologically functional products for use in drug delivery, in vitro models, and tissue engineering, research institutions across these regions are dedicated to innovating healthcare solutions that adhere to ethical standards while prioritising sustainability, affordability, and healthcare system benefits.</p><p><strong>Graphic abstract: </strong></p>","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":"7 6","pages":"825-856"},"PeriodicalIF":8.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618173/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142802812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D bioprinting of in vitro porous hepatoma models: establishment, evaluation, and anticancer drug testing 体外多孔肝癌模型的三维生物打印:建立、评估和抗癌药物测试
IF 7.9 1区 医学
Bio-Design and Manufacturing Pub Date : 2023-12-26 DOI: 10.1007/s42242-023-00263-1
{"title":"3D bioprinting of in vitro porous hepatoma models: establishment, evaluation, and anticancer drug testing","authors":"","doi":"10.1007/s42242-023-00263-1","DOIUrl":"https://doi.org/10.1007/s42242-023-00263-1","url":null,"abstract":"<h3>Abstract</h3> <p>Traditional tumor models do not tend to accurately simulate tumor growth in vitro or enable personalized treatment and are particularly unable to discover more beneficial targeted drugs. To address this, this study describes the use of three-dimensional (3D) bioprinting technology to construct a 3D model with human hepatocarcinoma SMMC-7721 cells (3DP-7721) by combining gelatin methacrylate (GelMA) and poly(ethylene oxide) (PEO) as two immiscible aqueous phases to form a bioink and innovatively applying fluorescent carbon quantum dots for long-term tracking of cells. The GelMA (10%, mass fraction) and PEO (1.6%, mass fraction) hydrogel with 3:1 volume ratio offered distinct pore-forming characteristics, satisfactory mechanical properties, and biocompatibility for the creation of the 3DP-7721 model. Immunofluorescence analysis and quantitative real-time fluorescence polymerase chain reaction (PCR) were used to evaluate the biological properties of the model. Compared with the two-dimensional culture cell model (2D-7721) and the 3D mixed culture cell model (3DM-7721), 3DP-7721 significantly improved the proliferation of cells and expression of tumor-related proteins and genes. Moreover, we evaluated the differences between the three culture models and the effectiveness of antitumor drugs in the three models and discovered that the efficacy of antitumor drugs varied because of significant differences in resistance proteins and genes between the three models. In addition, the comparison of tumor formation in the three models found that the cells cultured by the 3DP-7721 model had strong tumorigenicity in nude mice. Immunohistochemical evaluation of the levels of biochemical indicators related to the formation of solid tumors showed that the 3DP-7721 model group exhibited pathological characteristics of malignant tumors, the generated solid tumors were similar to actual tumors, and the deterioration was higher. This research therefore acts as a foundation for the application of 3DP-7721 models in drug development research.</p>","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":"88 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139056235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semi-implantable device based on multiplexed microfilament electrode cluster for continuous monitoring of physiological ions 基于多路微丝电极簇的半植入式设备,用于连续监测生理离子
IF 7.9 1区 医学
Bio-Design and Manufacturing Pub Date : 2023-12-19 DOI: 10.1007/s42242-023-00262-2
Shuang Huang, Shantao Zheng, Mengyi He, Chuanjie Yao, Xinshuo Huang, Zhengjie Liu, Qiangqiang Ouyang, Jing Liu, Feifei Wu, Hang Gao, Xi Xie, Hui-jiuan Chen
{"title":"Semi-implantable device based on multiplexed microfilament electrode cluster for continuous monitoring of physiological ions","authors":"Shuang Huang, Shantao Zheng, Mengyi He, Chuanjie Yao, Xinshuo Huang, Zhengjie Liu, Qiangqiang Ouyang, Jing Liu, Feifei Wu, Hang Gao, Xi Xie, Hui-jiuan Chen","doi":"10.1007/s42242-023-00262-2","DOIUrl":"https://doi.org/10.1007/s42242-023-00262-2","url":null,"abstract":"<p>Modern medicine is increasingly interested in advanced sensors to detect and analyze biochemical indicators. Ion sensors based on potentiometric methods are a promising platform for monitoring physiological ions in biological subjects. Current semi-implantable devices are mainly based on single-parameter detection. Miniaturized semi-implantable electrodes for multiparameter sensing have more restrictions on the electrode size due to biocompatibility considerations, but reducing the electrode surface area could potentially limit electrode sensitivity. This study developed a semi-implantable device system comprising a multiplexed microfilament electrode cluster (MMEC) and a printed circuit board for real-time monitoring of intra-tissue K<sup>+</sup>, Ca<sup>2+</sup>, and Na<sup>+</sup> concentrations. The electrode surface area was less important for the potentiometric sensing mechanism, suggesting the feasibility of using a tiny fiber-like electrode for potentiometric sensing. The MMEC device exhibited a broad linear response (K<sup>+</sup>: 2–32 mmol/L; Ca<sup>2+</sup>: 0.5–4 mmol/L; Na<sup>+</sup>: 10–160 mmol/L), high sensitivity (about 20–45 mV/decade), temporal stability (&gt;2 weeks), and good selectivity (&gt;80%) for the above ions. In vitro detection and in vivo subcutaneous and brain experiment results showed that the MMEC system exhibits good multi-ion monitoring performance in several complex environments. This work provides a platform for the continuous real-time monitoring of ion fluctuations in different situations and has implications for developing smart sensors to monitor human health.</p><h3 data-test=\"abstract-sub-heading\">Graphic abstract</h3>\u0000","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":"26 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138745801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信