ChemBioEng Reviews最新文献

筛选
英文 中文
Ladle Furnace Slag: Synthesis, Properties, and Applications 钢包炉渣:合成、性能及应用
IF 4.8 3区 工程技术
ChemBioEng Reviews Pub Date : 2023-11-23 DOI: 10.1002/cben.202300024
Liya Jacob
{"title":"Ladle Furnace Slag: Synthesis, Properties, and Applications","authors":"Liya Jacob","doi":"10.1002/cben.202300024","DOIUrl":"10.1002/cben.202300024","url":null,"abstract":"<p>Ladle slag is a byproduct formed during the ladle refining stage of steel making. It is a dusty material that has been considered industrial waste. Technical advancements towards a sustainable industry led to the development of different applications for ladle slag. Depending on the processing methods during the steel slag production and the weathering of the slag post-production, the elemental composition of the steel slag largely varies. Owing to this, its characteristics cannot be generalized and specific applications depending on the sources are developed. It is generally used in construction materials, soil rejuvenation, and CO<sub>2</sub> capture. This paper reviews the production process, the mineralogical and morphological properties, stabilization techniques, and the applications of ladle furnace (LF) slag. One of the prime focuses of waste remediation and sustainable industry is to find meaningful ways to turn waste into products. In this respect, a comprehensive review of the properties of LF slag and its current application will help provide a framework for the development of future sustainability goals. With increased slag usage, the ladle refining process of steelmaking can be turned into a more carbon-neutral process.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 1","pages":"60-78"},"PeriodicalIF":4.8,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cben.202300024","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138533573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phytoremediation: A Shift Towards Sustainability for Dairy Wastewater Treatment 植物修复:乳品废水处理向可持续性转变
IF 4.8 3区 工程技术
ChemBioEng Reviews Pub Date : 2023-11-10 DOI: 10.1002/cben.202300038
Sakshi Agrahari, Dr. Sushil Kumar
{"title":"Phytoremediation: A Shift Towards Sustainability for Dairy Wastewater Treatment","authors":"Sakshi Agrahari,&nbsp;Dr. Sushil Kumar","doi":"10.1002/cben.202300038","DOIUrl":"10.1002/cben.202300038","url":null,"abstract":"<p>Dairy processing industries have emerged as the most swiftly evolving sectors with excessive wastewater generation containing proteins, fat, oils, greases (FOGs), etc. As there is rising strain on energy usage and dependence on water resources, sustainable research focuses on reduction in wastewater generation and developing value-added goods. An effective and widely explored sustainable technique for treating wastewater is phytoremediation, a plant-based process. This review aims to analyze phytoremediation as a sustainable alternative for dairy wastewater treatment. It initially briefs about dairy wastewater characteristics and treatment alternatives and discusses constructed wetlands and hydroponic system in detail with mechanism insights and influenced process parameters. Interconnected technologies with phytoremediation and their impact on contaminant transformations, nutrient reuse, and detoxification of pollutants are encompassed. Also, resource recovery and biomass utilization, feedstock enrichment along with the future prospects of integrated hydroponic systems for achieving sustainability with efficient resource recovery are featured.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 1","pages":"115-135"},"PeriodicalIF":4.8,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135136603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards a Sustainable Circular Economy: Algae-Based Bioplastics and the Role of Internet-of-Things and Machine Learning 实现可持续的循环经济:基于藻类的生物塑料以及物联网和机器学习的作用
IF 4.8 3区 工程技术
ChemBioEng Reviews Pub Date : 2023-11-06 DOI: 10.1002/cben.202300028
Abu Danish Aiman Bin Abu Sofian, Hooi Ren Lim, Prof. Sivakumar Manickam, Dr. Wei Lun Ang, Prof. Dr. Pau Loke Show
{"title":"Towards a Sustainable Circular Economy: Algae-Based Bioplastics and the Role of Internet-of-Things and Machine Learning","authors":"Abu Danish Aiman Bin Abu Sofian,&nbsp;Hooi Ren Lim,&nbsp;Prof. Sivakumar Manickam,&nbsp;Dr. Wei Lun Ang,&nbsp;Prof. Dr. Pau Loke Show","doi":"10.1002/cben.202300028","DOIUrl":"10.1002/cben.202300028","url":null,"abstract":"<p>The growing potential of sustainable materials such as polyhydroxyalkanoates (PHAs), polylactic acid (PLA), alginate, carrageenan, and ulvan for bioplastics production presents an opportunity to promote a sustainable circular economy. This review investigates their properties, applications, and challenges. Bioplastics derived from algae offer an environmentally friendly alternative to petroleum-based plastics, a shift of paramount importance to society due to the escalating environmental concerns associated with traditional plastics. The role of the internet-of-things (IoT) and machine learning in refining these bioplastics' production and development processes is emphasized. IoT monitors cultivation conditions, data collection, and process control for more sustainable production. Machine learning can enhance algae cultivation, increasing the supply of raw materials for algal bioplastics and improving their efficiency and output. The study results indicate the promise of algae-based bioplastics, IoT, and machine learning in fostering a more environmentally sustainable future. By harnessing these advanced technologies, optimization of bioplastic production is possible, potentially revolutionizing the materials industry and addressing existing challenges toward achieving a sustainable circular economy.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 1","pages":"39-59"},"PeriodicalIF":4.8,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cben.202300028","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135636466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Advances in the Development of Li-Air Batteries, Experimental and Predictive Approaches – Prospective, Challenges, and Opportunities 锂空气电池开发、实验和预测方法的最新进展 - 前景、挑战和机遇
IF 4.8 3区 工程技术
ChemBioEng Reviews Pub Date : 2023-10-31 DOI: 10.1002/cben.202300036
Aisha Jilani, Prof. Zahoor Awan, Dr. Syed Ali Ammar Taqvi, Dr. Firoz Khan, Dr. Thamraa Alshahrani
{"title":"Recent Advances in the Development of Li-Air Batteries, Experimental and Predictive Approaches – Prospective, Challenges, and Opportunities","authors":"Aisha Jilani,&nbsp;Prof. Zahoor Awan,&nbsp;Dr. Syed Ali Ammar Taqvi,&nbsp;Dr. Firoz Khan,&nbsp;Dr. Thamraa Alshahrani","doi":"10.1002/cben.202300036","DOIUrl":"10.1002/cben.202300036","url":null,"abstract":"<p>The significance of lithium-air batteries (LABs) has recently increased as they are a highly competitive alternative to lithium-ion batteries (LIBs) for powering electric automobiles. The reason behind this is their excessive theoretical energy density. The advancement, breakthroughs, and drawbacks of LABs are examined. A comprehensive evaluation of various energy storage devices is provided, followed by an evaluation of several electrochemical storage technologies, their advantages, and drawbacks. Also, recent advances in LABs are reviewed and potential machine learning techniques are explored to address the existing obstacles hindering the widespread adoption of LABs.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 1","pages":"95-114"},"PeriodicalIF":4.8,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135928174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Passive Drag Reduction Technologies 被动减阻技术
IF 4.8 3区 工程技术
ChemBioEng Reviews Pub Date : 2023-10-18 DOI: 10.1002/cben.202300044
Dr. Taiba Kouser, Dr. Hina Zulfiqar, Dr. Misbah Misbah, Prof. Luai Muhammad Alhems
{"title":"Passive Drag Reduction Technologies","authors":"Dr. Taiba Kouser,&nbsp;Dr. Hina Zulfiqar,&nbsp;Dr. Misbah Misbah,&nbsp;Prof. Luai Muhammad Alhems","doi":"10.1002/cben.202300044","DOIUrl":"10.1002/cben.202300044","url":null,"abstract":"<p>The developments and involved factors of mature passive drag reduction technologies, i.e., compliant coating, superhydrophobic surfaces, and epoxy coating, are reviewed. Alterations in critical Reynolds number are observed in the presence of passive drag reduction technologies. With the advancement in technology, numerical approaches are introduced to lower the cost and achieve better understanding of physical phenomena such as lowering energy, flow control, designing the surfaces of materials, and so on. Experimental results as well as numerical results are stated. The effects of factors like wetting, contact angle, contact angle hysteresis, roughness, pot life, and coating aging responsible for drag reduction are also briefly presented with numerical and experimental perspective analyses.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"10 6","pages":"1110-1122"},"PeriodicalIF":4.8,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135888022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Curcuminoid Nanovesicles as Advanced Therapeutics 作为先进疗法的姜黄素纳米粒子
IF 4.8 3区 工程技术
ChemBioEng Reviews Pub Date : 2023-10-18 DOI: 10.1002/cben.202200047
Prof. Hanna S. Abbo, Dr. Divine M. Yufanyi, Tariq Shah, Prof. Nader G. Khaligh, Prof. Sampath Chinnam, Prof. Thomas Efferth, Prof. Salam J. J. Titinchi
{"title":"Curcuminoid Nanovesicles as Advanced Therapeutics","authors":"Prof. Hanna S. Abbo,&nbsp;Dr. Divine M. Yufanyi,&nbsp;Tariq Shah,&nbsp;Prof. Nader G. Khaligh,&nbsp;Prof. Sampath Chinnam,&nbsp;Prof. Thomas Efferth,&nbsp;Prof. Salam J. J. Titinchi","doi":"10.1002/cben.202200047","DOIUrl":"10.1002/cben.202200047","url":null,"abstract":"<p>Turmeric (<i>Curcuma longa rhizome</i>) is well-known for its therapeutic properties in traditional Indian and Chinese medicines. It has preventive and therapeutic activity against diseases that target human body systems as well as various cancer types. This review focuses on the mechanism of action of curcumin against various factors involved in the metastatic process. The antimicrobial, antidiabetic, anti-oxidant, and anti-HIV activities and mechanism of curcumin-functionalized nanovesicles are also reviewed. Despite the biocompatibility of curcumins, its medical applications are limited due to its low bioavailability, insolubility in water, and degradation at certain pH levels. Moreover, the low stability and rapid metabolism of curcumin limits its clinical applications. Therefore, it is imperative to design strategies to mitigate this shortfall which include the synthesis of curcumin glycosides or the development of curcumin delivery systems to improve the bioavailability and therapeutic efficacy of curcumin. This review provides insight into the different chemical methods for the synthesis and modification adopted to achieve these compounds.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"10 6","pages":"1083-1109"},"PeriodicalIF":4.8,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135884911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomedical Applications of 2D MXene Nanocomposites: A Review 二维 MXene 纳米复合材料的生物医学应用:综述
IF 4.8 3区 工程技术
ChemBioEng Reviews Pub Date : 2023-10-12 DOI: 10.1002/cben.202300029
Prof. Atul Thakur, Dr. Abhilash Pathania, Anand Salvi, Saarthak Kharbanda, Neetu Dhanda, Dr. Manish Shandaliya, Prof. Fayu Wan, Prof. Preeti Thakur
{"title":"Biomedical Applications of 2D MXene Nanocomposites: A Review","authors":"Prof. Atul Thakur,&nbsp;Dr. Abhilash Pathania,&nbsp;Anand Salvi,&nbsp;Saarthak Kharbanda,&nbsp;Neetu Dhanda,&nbsp;Dr. Manish Shandaliya,&nbsp;Prof. Fayu Wan,&nbsp;Prof. Preeti Thakur","doi":"10.1002/cben.202300029","DOIUrl":"10.1002/cben.202300029","url":null,"abstract":"<p>Biomaterials technology has advanced significantly in recent years and 2D nanostructures have played a key role in this advancement. A new ceramic 2D nanomaterial, MXene, made up of transition metal carbides, carbonitrides and nitrides with a planar layout that was produced by etching away “A” from a ceramic phase called “MAX”, has emerged to overcome the shortcomings of traditional biomaterials. MXene is used inadequately in biomedical applications due to its weak stability in physiological conditions, lack of prolonged and low biodegradability, and self-controlled drug release. These drawbacks have given rise to the idea of using MXene/Polymer nano composites, due to their major properties like large surface area, metallic conductivity, biocompatibility, hydrophilicity, and size tunability. Polymer functionalization is possible by the surface-available functional groups. This review has been done to focus on cutting-edge examples such as polymer functionalized composites MXene for the developing field of biomedical applications. These applications consist of precise and prolonged antimicrobial activity, bio sensing, therapeutics, drug delivery, contrast-enhanced diagnostic imaging, tissue engineering, flexible electronics, and bone regeneration.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"10 6","pages":"1050-1072"},"PeriodicalIF":4.8,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136014156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kinetic Modeling to Explain the Release of Medicine from Drug Delivery Systems 用动力学模型解释药物从给药系统中的释放
IF 4.8 3区 工程技术
ChemBioEng Reviews Pub Date : 2023-10-10 DOI: 10.1002/cben.202300027
Mahshid Askarizadeh, Dr. Nadia Esfandiari, Dr. Bizhan Honarvar, Dr. Seyed Ali Sajadian, Dr. Amin Azdarpour
{"title":"Kinetic Modeling to Explain the Release of Medicine from Drug Delivery Systems","authors":"Mahshid Askarizadeh,&nbsp;Dr. Nadia Esfandiari,&nbsp;Dr. Bizhan Honarvar,&nbsp;Dr. Seyed Ali Sajadian,&nbsp;Dr. Amin Azdarpour","doi":"10.1002/cben.202300027","DOIUrl":"10.1002/cben.202300027","url":null,"abstract":"<p>Proper medication dissolution must be ensured when developing or manufacturing a new solid dosage form. Quantitative analyses performed in dissolution or release tests become simpler when applying mathematical formulae which represent dissolution outcomes as a function of several dosage form properties. Methodologies utilized to examine the kinetics of drug release from controlled-release formulations are reviewed. The analysis of variance was conducted using statistical, model-independent, and -dependent techniques for the dissolution profile comparison and fitting, respectively. Model equations, including zero- and first-order, Hixson-Crowell, Weibull, Higuchi, Korsmeyer-Peppas, Baker-Lonsdale, Hopfenberg, etc., were employed to match the experimental data. Additional release parameters were taken to illustrate the drug release patterns. Using correlation factors and the Akaike information criterion (AIC), the best-fitting model was discovered, as were the transport phenomena affecting the behavior of the recognized formulations.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"10 6","pages":"1006-1049"},"PeriodicalIF":4.8,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136359953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Recent Developments and Emerging Opportunities for Biomass Derived Carbon Materials in Dye Sensitized Solar Energy Conversion 染料敏化太阳能转换中生物质衍生碳材料的最新发展和新机遇
IF 4.8 3区 工程技术
ChemBioEng Reviews Pub Date : 2023-10-09 DOI: 10.1002/cben.202300018
Dr. Singaravelu Vivekanandhan
{"title":"Recent Developments and Emerging Opportunities for Biomass Derived Carbon Materials in Dye Sensitized Solar Energy Conversion","authors":"Dr. Singaravelu Vivekanandhan","doi":"10.1002/cben.202300018","DOIUrl":"10.1002/cben.202300018","url":null,"abstract":"<p>To meet the ever-increasing demand for solar energy conversion, the exploration of new materials that improve energy and cost efficiency is great significance. Particularly in dye-sensitized solar cells, extensive efforts have been made to substitute the traditional metal-based components with various carbon materials. As the result, carbon materials such as carbon dots, carbon nanotubes, grapheme, and porous carbon materials are explored for their components, which are traditionally derived from fossil resources. Recently these carbon materials are widely synthesized or derived from renewable biomasses and getting important in solar energy conversion due to their similar structural, physicochemical, morphological, and functional features of above stated traditional carbon materials. The utilization of these biocarbon materials offers numerous environmental and economic benefits over traditional carbon materials and creates a new pathway towards a sustainable future. Thus, this review summarizes the recent exploration of biocarbon materials in dye-sensitized solar cells and discusses their emerging opportunities.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"10 6","pages":"993-1005"},"PeriodicalIF":4.8,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135146529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Masthead: ChemBioEng Reviews 5/2023 刊头:ChemBioEng评论5/2023
IF 4.8 3区 工程技术
ChemBioEng Reviews Pub Date : 2023-10-02 DOI: 10.1002/cben.202370502
{"title":"Masthead: ChemBioEng Reviews 5/2023","authors":"","doi":"10.1002/cben.202370502","DOIUrl":"https://doi.org/10.1002/cben.202370502","url":null,"abstract":"","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"10 5","pages":"612"},"PeriodicalIF":4.8,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cben.202370502","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50118637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信