ChemBioEng Reviews最新文献

筛选
英文 中文
Current Progress on Dual-Layer Hollow Fiber Mixed-Matrix Membrane in CO2 Capture 双层中空纤维混合基质膜在二氧化碳捕集方面的最新进展
IF 4.8 3区 工程技术
ChemBioEng Reviews Pub Date : 2024-05-01 DOI: 10.1002/cben.202300062
Muhammad Hamad Zeeshan, Yin Fong Yeong, Thiam Leng Chew
{"title":"Current Progress on Dual-Layer Hollow Fiber Mixed-Matrix Membrane in CO2 Capture","authors":"Muhammad Hamad Zeeshan,&nbsp;Yin Fong Yeong,&nbsp;Thiam Leng Chew","doi":"10.1002/cben.202300062","DOIUrl":"10.1002/cben.202300062","url":null,"abstract":"<p>Carbon dioxide (CO<sub>2</sub>) is a greenhouse gas which is mainly found in natural gas (NG), biogas, and flue gas. Anthropogenic CO<sub>2</sub> emissions are the direct result of burning fossil fuels. Meanwhile, pre- and postcombustion CO<sub>2</sub> separation is a current state of CO<sub>2</sub> removal method in an extensive manner. From environmental, economic, and transportation perspectives, removal of CO<sub>2</sub> has driven the development of its separation process technology. Among the reported technologies, membrane-based gas separation technologies have grown substantially, breakthroughs and advances in past decades. This review paper aims to provide an overview on competitive gas separation processes, different types of membranes available, gas transport mechanisms, and fabrication process of hollow fiber membranes, particularly dual-layer hollow fiber membrane. The performance of the membranes in CO<sub>2</sub> separation and effect of spinning parameters on the formation of hollow fiber membranes are highlighted. In addition, approaches to improve the dual-layer adhesion, strategies to enhance the filler compatibility in the development of dual-layer hollow fiber mixed-matrix membranes, and effect of post-treatments on the gas separation performance of membrane are also discussed. Finally, challenges and future perspectives of dual-layer hollow fiber mixed-matrix membranes toward CO<sub>2</sub> capture, particularly on CO<sub>2</sub>/CH<sub>4</sub> and CO<sub>2</sub>/N<sub>2</sub> separation, are also included, due to its substantial and direct relevance to the gas separation industry.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 3","pages":"513-542"},"PeriodicalIF":4.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140832016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applications of Cellulose-Based Nanomaterials for Sustainability and Therapeutics: A Review 纤维素基纳米材料在可持续性和治疗方面的应用:综述
IF 6.2 3区 工程技术
ChemBioEng Reviews Pub Date : 2024-04-30 DOI: 10.1002/cben.202300069
Ruken Sariboga, Omer Faruk Sarioglu
{"title":"Applications of Cellulose-Based Nanomaterials for Sustainability and Therapeutics: A Review","authors":"Ruken Sariboga,&nbsp;Omer Faruk Sarioglu","doi":"10.1002/cben.202300069","DOIUrl":"10.1002/cben.202300069","url":null,"abstract":"<p>Cellulose is a natural fibrous carbohydrate, is the main structural element of plant cell walls, and is the most abundant natural polymer found in the biosphere. Due to its abundance and chemical stability, it has been used as a raw material in various industries for thousands of years. Due to developments in nanotechnology, materials that are used in macroscale abundantly are also utilized for nanomaterial design, and cellulose-based nanomaterials have gained more interest in recent years. The unique properties of cellulose-based nanomaterials including their chemical stability, high degree of crystallinity, biocompatibility, biodegradability, and tunability of their chemical (e.g., surface modification) and physical (e.g., shape) properties make them good candidates for functional nanomaterial design. This review brings advances in cellulose-based nanomaterials for application in two major fields, sustainability and therapeutics.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 4","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cben.202300069","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140831567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of Microbial Diversity in Lignocellulosic Biomass Degradation: A Biotechnological Perspective 微生物多样性在木质纤维素生物质降解中的作用:生物技术视角
IF 4.8 3区 工程技术
ChemBioEng Reviews Pub Date : 2024-04-29 DOI: 10.1002/cben.202300073
Ghulam Rasool, Muhammad Irfan
{"title":"The Role of Microbial Diversity in Lignocellulosic Biomass Degradation: A Biotechnological Perspective","authors":"Ghulam Rasool,&nbsp;Muhammad Irfan","doi":"10.1002/cben.202300073","DOIUrl":"10.1002/cben.202300073","url":null,"abstract":"<p>Lignocellulosic biomass, such as plant residues and agricultural waste, holds immense potential as a renewable resource for the production of biofuels, chemicals, and animal feed. However, the efficient degradation of lignocellulose into fermentable sugars remains a significant challenge. Recent research has highlighted the critical role of microbial diversity in lignocellulosic biomass degradation, offering new insights from a biotechnological perspective. The comprehension and utilization of microbial diversity are crucial for developing efficient biotechnological strategies for lignocellulosic biomass degradation. By uncovering the intricate relationships between microbial communities and their enzymatic machinery, researchers can optimize degradation processes, enhance biofuel production, and contribute to a more sustainable bio-based economy. Microorganisms, including bacteria, fungi, and archaea, possess diverse enzymatic capabilities, allowing them to secrete a plethora of lignocellulolytic enzymes. Microbial organisms inhabiting extreme environments, such as the rumen, hot and cold springs, deep sea trenches, and acidic and alkaline pH environments, exhibit significant potential in generating enzymes, including hemicellulolytic and lignocellulolytic enzymes, which possess superior biochemical properties essential for industrial bioconversion applications. This review explores the ability of lignocellulosic enzymes from microbial sources to efficiently break down the lignocellulosic biomass and their potential applications in industrial biotechnology.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 3","pages":"613-635"},"PeriodicalIF":4.8,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140831739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnesium Oxide Nanoparticles: Biogenic Synthesis and Biomedical Applications 氧化镁纳米颗粒:生物合成与生物医学应用
IF 4.8 3区 工程技术
ChemBioEng Reviews Pub Date : 2024-04-24 DOI: 10.1002/cben.202300053
Humaira, Irfan Ahmad, Hafiz Abdullah Shakir, Muhammad Khan, Shaukat Ali, Mesfer Alshahrani, Marcelo Franco, Muhammad Irfan
{"title":"Magnesium Oxide Nanoparticles: Biogenic Synthesis and Biomedical Applications","authors":"Humaira,&nbsp;Irfan Ahmad,&nbsp;Hafiz Abdullah Shakir,&nbsp;Muhammad Khan,&nbsp;Shaukat Ali,&nbsp;Mesfer Alshahrani,&nbsp;Marcelo Franco,&nbsp;Muhammad Irfan","doi":"10.1002/cben.202300053","DOIUrl":"10.1002/cben.202300053","url":null,"abstract":"<p>Currently, nanotechnology is developing at an exponential rate because of its widespread applications in various fields of life sciences. Traditionally, nanoparticles are fabricated through a variety of physical and chemical approaches but because of their limited efficiency in biomedical applications, biogenic synthesis of nanoparticles has gained much attention. Biogenically fabricated magnesium oxide nanoparticles (MgONPs) possess unique features that enabled their use in therapeutics and environmental biotechnology. Biogenically MgONPs can be fabricated using plant extracts (<i>Manihot esculenta, Rhizophora lamarckii, Ocimum sanctum</i>, rosemary, <i>Bauhinia purpurea</i>, and others), bacteria (<i>S. coelicolor</i>, <i>A. johnsonii</i> RTN), fungi (<i>Aspergillus flavus</i> TFR-12, <i>Aspergillus brasiliensis</i> TFR 2, white-button mushroom's) and algae (<i>S. whigti</i>). These biogenically synthesized MgONPs are being reported as antifungal, antioxidant, antibacterial, antipyretic, anti-inflammatory, and anticancer agents. Moreover, their photocatalytic activity is far being discovered against certain organic dyes. This review focuses on the biogenic synthesis of MgONPs, their applications in therapeutics, and as antimicrobial agents as well as future prospects associated with their applications in the biomedical field.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 3","pages":"447-456"},"PeriodicalIF":4.8,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140661514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in Rare Earth-Doped ZnO Photocatalysts: Enhancing Photogenerated Electron-Hole Pairs for Radical Atom Generation 稀土掺杂氧化锌光催化剂的研究进展:增强光生电子-空穴对促进自由基原子生成
IF 4.8 3区 工程技术
ChemBioEng Reviews Pub Date : 2024-04-18 DOI: 10.1002/cben.202300058
Andi Uswatun Hasanah, Muh. Syihab Ikbal, Dahlang Tahir
{"title":"Advances in Rare Earth-Doped ZnO Photocatalysts: Enhancing Photogenerated Electron-Hole Pairs for Radical Atom Generation","authors":"Andi Uswatun Hasanah,&nbsp;Muh. Syihab Ikbal,&nbsp;Dahlang Tahir","doi":"10.1002/cben.202300058","DOIUrl":"10.1002/cben.202300058","url":null,"abstract":"<p>Zinc oxide (ZnO) is a promising material with a diverse range of applications, spanning gas sensing, photonics, photovoltaics, energy conversion, water splitting, photocatalysis, and transparent trapping. However, ZnO limited responsiveness to visible light affected to low photogenerated electron-hole pairs (charge), low quantum efficiency, and high recombination of charge. In this review, we are addressing innovative strategies, including incorporation rare earth elements as a trap of electron to reduce recombination charge via ZnO doping from analysis 118 referenced sources. We found that hydrothermal shows very good methods for boosting efficiency up to 100 % within 60-min. We found that for rare-earth metals La and Ce as a doping show highest efficiency up to 100 % within 120 min irradiations, means that efficient as a trap for reducing recombination of charge. The potential of rare earth doped ZnO will enhance photogenerated electron-hole pairs, catalyzing the generation of radical atoms via oxidation and reduction reactions. This review encapsulates the most current findings, it serves as a valuable resource for scholars seeking to advance their understanding of rare earth doped ZnO photocatalysts and developing innovative photocatalytic technologies.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 3","pages":"595-612"},"PeriodicalIF":4.8,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140623983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Capacity of Alkali-Activated Industrial Wastes in Novel Sustainable Ceramic Membranes 新型可持续陶瓷膜中碱液活化工业废料的能力
IF 4.8 3区 工程技术
ChemBioEng Reviews Pub Date : 2024-04-16 DOI: 10.1002/cben.202300041
Sina Shiwa, Arash Khosravi, Farzaneh Mohammadi, Mohsen Abbasi, Mika Sillanpää
{"title":"The Capacity of Alkali-Activated Industrial Wastes in Novel Sustainable Ceramic Membranes","authors":"Sina Shiwa,&nbsp;Arash Khosravi,&nbsp;Farzaneh Mohammadi,&nbsp;Mohsen Abbasi,&nbsp;Mika Sillanpää","doi":"10.1002/cben.202300041","DOIUrl":"10.1002/cben.202300041","url":null,"abstract":"<p>Novel ceramic membranes present unquestionable potential in wastewater treatment among the emerging technologies, while a few challenges such as cost, energy consumption, durability, and resistance in harsh mediums still limit their commercialization. Here, we review the capability of available industrial aluminosilicate waste materials in the fabrication of novel ceramic membranes using green and economical alkali-activation synthesis method. The different sources of alkali-activated aluminosilicate wastes including ashes, mining wastes, glass and ceramic wastes, slags, construction wastes, industrial byproducts, and agricultural wastes are introduced and the chemistry of geopolymers is reviewed. In this review, the major points are the following. 1) The alkali-activated structures present reasonable chemical, frost, carbonation, and mechanical resistance as well as the ability to immobilize the toxic materials. 2) The synthesis aspects of porous and nonporous alkali-activated ceramic membranes are explored by characterization methods. Furthermore, the durability analysis in harsh environments reveals that alkali-activated ceramic membranes possess high resistance against acidic, alkaline, and other antifouling chemical washing methods. In summary, it is demonstrated that the studied membranes have an undeniable capability in the separation of organic solvents in the pervaporation process as well as toxic material removal from water with high ion-exchange capacity.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 3","pages":"555-572"},"PeriodicalIF":4.8,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140583201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
State of the Art of Methanol Reforming for Hydrogen Generation 甲醇转化制氢技术现状
IF 4.8 3区 工程技术
ChemBioEng Reviews Pub Date : 2024-04-12 DOI: 10.1002/cben.202300068
Thirumalesh B. S., Dr. Ramesh Asapu
{"title":"State of the Art of Methanol Reforming for Hydrogen Generation","authors":"Thirumalesh B. S.,&nbsp;Dr. Ramesh Asapu","doi":"10.1002/cben.202300068","DOIUrl":"10.1002/cben.202300068","url":null,"abstract":"<p>Green hydrogen is the energy carrier set in the roadmap to achieve the net zero target. However, hydrogen as the future energy vector, either in compressed gaseous form or liquefied form, demands a complete overhaul of storage and transportation infrastructure at a global scale. Methanol is one of the commercially viable hydrogen carriers that can overcome the infrastructure challenges associated with the storage and transportation of hydrogen. As a sustainable hydrogen carrier, methanol must be reformed to hydrogen prior to the point of usage. This review begins with a detailed discussion on thermocatalytic methanol reforming, catalysts, operating conditions, and the associated challenges for both stationary and mobility applications. An in-depth analysis of the existing commercial methanol reformers available for on-board and onsite hydrogen generation is also presented. The current state of the research-level photo- and electroreforming as a possible alternative to thermocatalytic reforming is reviewed and concludes with the future prospects for methanol reforming.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 3","pages":"543-554"},"PeriodicalIF":4.8,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140583097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metal-Organic Framework-Based Composites for Rapid and Sensitive Virus Detection: Current Status and Future Prospective 基于金属有机框架的复合材料用于快速灵敏的病毒检测:现状与未来展望
IF 4.8 3区 工程技术
ChemBioEng Reviews Pub Date : 2024-04-01 DOI: 10.1002/cben.202300061
Aya ElGazar, Dr. Rana Sabouni, Prof. Mehdi Ghommem
{"title":"Metal-Organic Framework-Based Composites for Rapid and Sensitive Virus Detection: Current Status and Future Prospective","authors":"Aya ElGazar,&nbsp;Dr. Rana Sabouni,&nbsp;Prof. Mehdi Ghommem","doi":"10.1002/cben.202300061","DOIUrl":"10.1002/cben.202300061","url":null,"abstract":"<p>The current spread of various viruses has negatively affected human life and health. Developing enhanced virus diagnostic techniques to mitigate future outbreaks is becoming vital. Metal-organic frameworks (MOFs) have gained significant attention for their potential applications in virus detection because of their outstanding features, including high surface area, tunable properties, and adjustable pore size. Integrating nanomaterials with MOFs can also further enhance these properties, creating a new class of materials referred to as MOF-based nanocomposites. This review paper provides an overview of the MOF-based nanocomposites' status and future prospects for enhanced virus detection. The recent advances in the synthesis and functionalization of MOF and MOF-based nanocomposites for virus detection are discussed. The paper describes the different types of detection platforms, including nucleic acid and immunological detection, as well as the mechanisms of MOF-based sensors and the techniques used to synthesize MOFs and MOF-based nanocomposites for virus detection. Additionally, the review paper explores the potential of integrating MOFs into real sensing devices and their prospects in real-life applications. Finally, the paper examines the current challenges of these biosensing platforms. Overall, the review paper highlights the capability of MOFs and MOF-based nanocomposites as versatile and practical platforms for virus detection and provides a comprehensive overview of the latest advancements in this area of research.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 3","pages":"457-482"},"PeriodicalIF":4.8,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140583090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Masthead: ChemBioEng Reviews 2/2024 刊头:ChemBioEng Reviews 2/2024
IF 4.8 3区 工程技术
ChemBioEng Reviews Pub Date : 2024-04-01 DOI: 10.1002/cben.202470202
{"title":"Masthead: ChemBioEng Reviews 2/2024","authors":"","doi":"10.1002/cben.202470202","DOIUrl":"https://doi.org/10.1002/cben.202470202","url":null,"abstract":"","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 2","pages":"172"},"PeriodicalIF":4.8,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cben.202470202","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140340395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Table of Contents: ChemBioEng Reviews 2/2024 目录:ChemBioEng Reviews 2/2024
IF 4.8 3区 工程技术
ChemBioEng Reviews Pub Date : 2024-04-01 DOI: 10.1002/cben.202470203
{"title":"Table of Contents: ChemBioEng Reviews 2/2024","authors":"","doi":"10.1002/cben.202470203","DOIUrl":"https://doi.org/10.1002/cben.202470203","url":null,"abstract":"","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 2","pages":"173-177"},"PeriodicalIF":4.8,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cben.202470203","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140340396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信