{"title":"纤维素基纳米材料在可持续性和治疗方面的应用:综述","authors":"Ruken Sariboga, Omer Faruk Sarioglu","doi":"10.1002/cben.202300069","DOIUrl":null,"url":null,"abstract":"<p>Cellulose is a natural fibrous carbohydrate, is the main structural element of plant cell walls, and is the most abundant natural polymer found in the biosphere. Due to its abundance and chemical stability, it has been used as a raw material in various industries for thousands of years. Due to developments in nanotechnology, materials that are used in macroscale abundantly are also utilized for nanomaterial design, and cellulose-based nanomaterials have gained more interest in recent years. The unique properties of cellulose-based nanomaterials including their chemical stability, high degree of crystallinity, biocompatibility, biodegradability, and tunability of their chemical (e.g., surface modification) and physical (e.g., shape) properties make them good candidates for functional nanomaterial design. This review brings advances in cellulose-based nanomaterials for application in two major fields, sustainability and therapeutics.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 4","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cben.202300069","citationCount":"0","resultStr":"{\"title\":\"Applications of Cellulose-Based Nanomaterials for Sustainability and Therapeutics: A Review\",\"authors\":\"Ruken Sariboga, Omer Faruk Sarioglu\",\"doi\":\"10.1002/cben.202300069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cellulose is a natural fibrous carbohydrate, is the main structural element of plant cell walls, and is the most abundant natural polymer found in the biosphere. Due to its abundance and chemical stability, it has been used as a raw material in various industries for thousands of years. Due to developments in nanotechnology, materials that are used in macroscale abundantly are also utilized for nanomaterial design, and cellulose-based nanomaterials have gained more interest in recent years. The unique properties of cellulose-based nanomaterials including their chemical stability, high degree of crystallinity, biocompatibility, biodegradability, and tunability of their chemical (e.g., surface modification) and physical (e.g., shape) properties make them good candidates for functional nanomaterial design. This review brings advances in cellulose-based nanomaterials for application in two major fields, sustainability and therapeutics.</p>\",\"PeriodicalId\":48623,\"journal\":{\"name\":\"ChemBioEng Reviews\",\"volume\":\"11 4\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cben.202300069\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemBioEng Reviews\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cben.202300069\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioEng Reviews","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cben.202300069","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Applications of Cellulose-Based Nanomaterials for Sustainability and Therapeutics: A Review
Cellulose is a natural fibrous carbohydrate, is the main structural element of plant cell walls, and is the most abundant natural polymer found in the biosphere. Due to its abundance and chemical stability, it has been used as a raw material in various industries for thousands of years. Due to developments in nanotechnology, materials that are used in macroscale abundantly are also utilized for nanomaterial design, and cellulose-based nanomaterials have gained more interest in recent years. The unique properties of cellulose-based nanomaterials including their chemical stability, high degree of crystallinity, biocompatibility, biodegradability, and tunability of their chemical (e.g., surface modification) and physical (e.g., shape) properties make them good candidates for functional nanomaterial design. This review brings advances in cellulose-based nanomaterials for application in two major fields, sustainability and therapeutics.
ChemBioEng ReviewsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
7.90
自引率
2.10%
发文量
45
期刊介绍:
Launched in 2014, ChemBioEng Reviews is aimed to become a top-ranking journal publishing review articles offering information on significant developments and provide fundamental knowledge of important topics in the fields of chemical engineering and biotechnology. The journal supports academics and researchers in need for concise, easy to access information on specific topics. The articles cover all fields of (bio-) chemical engineering and technology, e.g.,