{"title":"The Role of Microbial Diversity in Lignocellulosic Biomass Degradation: A Biotechnological Perspective","authors":"Ghulam Rasool, Muhammad Irfan","doi":"10.1002/cben.202300073","DOIUrl":null,"url":null,"abstract":"<p>Lignocellulosic biomass, such as plant residues and agricultural waste, holds immense potential as a renewable resource for the production of biofuels, chemicals, and animal feed. However, the efficient degradation of lignocellulose into fermentable sugars remains a significant challenge. Recent research has highlighted the critical role of microbial diversity in lignocellulosic biomass degradation, offering new insights from a biotechnological perspective. The comprehension and utilization of microbial diversity are crucial for developing efficient biotechnological strategies for lignocellulosic biomass degradation. By uncovering the intricate relationships between microbial communities and their enzymatic machinery, researchers can optimize degradation processes, enhance biofuel production, and contribute to a more sustainable bio-based economy. Microorganisms, including bacteria, fungi, and archaea, possess diverse enzymatic capabilities, allowing them to secrete a plethora of lignocellulolytic enzymes. Microbial organisms inhabiting extreme environments, such as the rumen, hot and cold springs, deep sea trenches, and acidic and alkaline pH environments, exhibit significant potential in generating enzymes, including hemicellulolytic and lignocellulolytic enzymes, which possess superior biochemical properties essential for industrial bioconversion applications. This review explores the ability of lignocellulosic enzymes from microbial sources to efficiently break down the lignocellulosic biomass and their potential applications in industrial biotechnology.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 3","pages":"613-635"},"PeriodicalIF":6.2000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioEng Reviews","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cben.202300073","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lignocellulosic biomass, such as plant residues and agricultural waste, holds immense potential as a renewable resource for the production of biofuels, chemicals, and animal feed. However, the efficient degradation of lignocellulose into fermentable sugars remains a significant challenge. Recent research has highlighted the critical role of microbial diversity in lignocellulosic biomass degradation, offering new insights from a biotechnological perspective. The comprehension and utilization of microbial diversity are crucial for developing efficient biotechnological strategies for lignocellulosic biomass degradation. By uncovering the intricate relationships between microbial communities and their enzymatic machinery, researchers can optimize degradation processes, enhance biofuel production, and contribute to a more sustainable bio-based economy. Microorganisms, including bacteria, fungi, and archaea, possess diverse enzymatic capabilities, allowing them to secrete a plethora of lignocellulolytic enzymes. Microbial organisms inhabiting extreme environments, such as the rumen, hot and cold springs, deep sea trenches, and acidic and alkaline pH environments, exhibit significant potential in generating enzymes, including hemicellulolytic and lignocellulolytic enzymes, which possess superior biochemical properties essential for industrial bioconversion applications. This review explores the ability of lignocellulosic enzymes from microbial sources to efficiently break down the lignocellulosic biomass and their potential applications in industrial biotechnology.
ChemBioEng ReviewsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
7.90
自引率
2.10%
发文量
45
期刊介绍:
Launched in 2014, ChemBioEng Reviews is aimed to become a top-ranking journal publishing review articles offering information on significant developments and provide fundamental knowledge of important topics in the fields of chemical engineering and biotechnology. The journal supports academics and researchers in need for concise, easy to access information on specific topics. The articles cover all fields of (bio-) chemical engineering and technology, e.g.,