{"title":"State of the Art of Methanol Reforming for Hydrogen Generation","authors":"Thirumalesh B. S., Dr. Ramesh Asapu","doi":"10.1002/cben.202300068","DOIUrl":null,"url":null,"abstract":"<p>Green hydrogen is the energy carrier set in the roadmap to achieve the net zero target. However, hydrogen as the future energy vector, either in compressed gaseous form or liquefied form, demands a complete overhaul of storage and transportation infrastructure at a global scale. Methanol is one of the commercially viable hydrogen carriers that can overcome the infrastructure challenges associated with the storage and transportation of hydrogen. As a sustainable hydrogen carrier, methanol must be reformed to hydrogen prior to the point of usage. This review begins with a detailed discussion on thermocatalytic methanol reforming, catalysts, operating conditions, and the associated challenges for both stationary and mobility applications. An in-depth analysis of the existing commercial methanol reformers available for on-board and onsite hydrogen generation is also presented. The current state of the research-level photo- and electroreforming as a possible alternative to thermocatalytic reforming is reviewed and concludes with the future prospects for methanol reforming.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 3","pages":"543-554"},"PeriodicalIF":6.2000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioEng Reviews","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cben.202300068","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Green hydrogen is the energy carrier set in the roadmap to achieve the net zero target. However, hydrogen as the future energy vector, either in compressed gaseous form or liquefied form, demands a complete overhaul of storage and transportation infrastructure at a global scale. Methanol is one of the commercially viable hydrogen carriers that can overcome the infrastructure challenges associated with the storage and transportation of hydrogen. As a sustainable hydrogen carrier, methanol must be reformed to hydrogen prior to the point of usage. This review begins with a detailed discussion on thermocatalytic methanol reforming, catalysts, operating conditions, and the associated challenges for both stationary and mobility applications. An in-depth analysis of the existing commercial methanol reformers available for on-board and onsite hydrogen generation is also presented. The current state of the research-level photo- and electroreforming as a possible alternative to thermocatalytic reforming is reviewed and concludes with the future prospects for methanol reforming.
ChemBioEng ReviewsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
7.90
自引率
2.10%
发文量
45
期刊介绍:
Launched in 2014, ChemBioEng Reviews is aimed to become a top-ranking journal publishing review articles offering information on significant developments and provide fundamental knowledge of important topics in the fields of chemical engineering and biotechnology. The journal supports academics and researchers in need for concise, easy to access information on specific topics. The articles cover all fields of (bio-) chemical engineering and technology, e.g.,