Dr. Fatima Mumtaz, Muhammad Atif, Dr. Farah Naz, Dr. Baosong Li, Dr. Kean Wang, Dr. Maryam Rashed AlShehhi
{"title":"用于废水中抗生素修复的先进混合分子印迹聚合物","authors":"Dr. Fatima Mumtaz, Muhammad Atif, Dr. Farah Naz, Dr. Baosong Li, Dr. Kean Wang, Dr. Maryam Rashed AlShehhi","doi":"10.1002/cben.202300057","DOIUrl":null,"url":null,"abstract":"<p>Increasing contamination of water bodies with antibiotics has necessitated the development of novel mitigation methods. Many studies have applied adsorption and photocatalytic processes using different nanoparticles, metal-organic frameworks, etc., as sorbents and photocatalysts for antibiotics removal. Among these materials, the development of molecular imprinted polymers (MIPs) is desirable owing to their low cost, structural predictability, detection at deficient concentrations, and versatile applicability. These attributes further encouraged researchers to fabricate hybrid MIP-based materials to abate antibiotic contamination in wastewater. This review summarizes recent studies that deal with conventional and hybrid MIPs such as MIPs-hybrid carbon nanomaterials, magnetic nanomaterials, advanced MIP-based sensors, and photocatalytic materials MIPs for synergic adsorption/separation of antibiotic residuals from wastewater. Economic perspectives of the emerging hybrid materials are also discussed. Some limitations, research gaps, and future potentials for further advancement and efficient remediation results are outlined.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 3","pages":"495-512"},"PeriodicalIF":6.2000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cben.202300057","citationCount":"0","resultStr":"{\"title\":\"Advanced Hybrid Molecular Imprinted Polymers for Antibiotics Remediation from Wastewater\",\"authors\":\"Dr. Fatima Mumtaz, Muhammad Atif, Dr. Farah Naz, Dr. Baosong Li, Dr. Kean Wang, Dr. Maryam Rashed AlShehhi\",\"doi\":\"10.1002/cben.202300057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Increasing contamination of water bodies with antibiotics has necessitated the development of novel mitigation methods. Many studies have applied adsorption and photocatalytic processes using different nanoparticles, metal-organic frameworks, etc., as sorbents and photocatalysts for antibiotics removal. Among these materials, the development of molecular imprinted polymers (MIPs) is desirable owing to their low cost, structural predictability, detection at deficient concentrations, and versatile applicability. These attributes further encouraged researchers to fabricate hybrid MIP-based materials to abate antibiotic contamination in wastewater. This review summarizes recent studies that deal with conventional and hybrid MIPs such as MIPs-hybrid carbon nanomaterials, magnetic nanomaterials, advanced MIP-based sensors, and photocatalytic materials MIPs for synergic adsorption/separation of antibiotic residuals from wastewater. Economic perspectives of the emerging hybrid materials are also discussed. Some limitations, research gaps, and future potentials for further advancement and efficient remediation results are outlined.</p>\",\"PeriodicalId\":48623,\"journal\":{\"name\":\"ChemBioEng Reviews\",\"volume\":\"11 3\",\"pages\":\"495-512\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cben.202300057\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemBioEng Reviews\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cben.202300057\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioEng Reviews","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cben.202300057","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Advanced Hybrid Molecular Imprinted Polymers for Antibiotics Remediation from Wastewater
Increasing contamination of water bodies with antibiotics has necessitated the development of novel mitigation methods. Many studies have applied adsorption and photocatalytic processes using different nanoparticles, metal-organic frameworks, etc., as sorbents and photocatalysts for antibiotics removal. Among these materials, the development of molecular imprinted polymers (MIPs) is desirable owing to their low cost, structural predictability, detection at deficient concentrations, and versatile applicability. These attributes further encouraged researchers to fabricate hybrid MIP-based materials to abate antibiotic contamination in wastewater. This review summarizes recent studies that deal with conventional and hybrid MIPs such as MIPs-hybrid carbon nanomaterials, magnetic nanomaterials, advanced MIP-based sensors, and photocatalytic materials MIPs for synergic adsorption/separation of antibiotic residuals from wastewater. Economic perspectives of the emerging hybrid materials are also discussed. Some limitations, research gaps, and future potentials for further advancement and efficient remediation results are outlined.
ChemBioEng ReviewsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
7.90
自引率
2.10%
发文量
45
期刊介绍:
Launched in 2014, ChemBioEng Reviews is aimed to become a top-ranking journal publishing review articles offering information on significant developments and provide fundamental knowledge of important topics in the fields of chemical engineering and biotechnology. The journal supports academics and researchers in need for concise, easy to access information on specific topics. The articles cover all fields of (bio-) chemical engineering and technology, e.g.,