Nature Machine Intelligence最新文献

筛选
英文 中文
Physicochemical graph neural network for learning protein–ligand interaction fingerprints from sequence data 从序列数据中学习蛋白质配体相互作用指纹的物理化学图神经网络
IF 18.8 1区 计算机科学
Nature Machine Intelligence Pub Date : 2024-06-17 DOI: 10.1038/s42256-024-00847-1
Huan Yee Koh, Anh T. N. Nguyen, Shirui Pan, Lauren T. May, Geoffrey I. Webb
{"title":"Physicochemical graph neural network for learning protein–ligand interaction fingerprints from sequence data","authors":"Huan Yee Koh, Anh T. N. Nguyen, Shirui Pan, Lauren T. May, Geoffrey I. Webb","doi":"10.1038/s42256-024-00847-1","DOIUrl":"10.1038/s42256-024-00847-1","url":null,"abstract":"In drug discovery, determining the binding affinity and functional effects of small-molecule ligands on proteins is critical. Current computational methods can predict these protein–ligand interaction properties but often lose accuracy without high-resolution protein structures and falter in predicting functional effects. Here we introduce PSICHIC (PhySIcoCHemICal graph neural network), a framework incorporating physicochemical constraints to decode interaction fingerprints directly from sequence data alone. This enables PSICHIC to attain capabilities in decoding mechanisms underlying protein–ligand interactions, achieving state-of-the-art accuracy and interpretability. Trained on identical protein–ligand pairs without structural data, PSICHIC matched and even surpassed leading structure-based methods in binding-affinity prediction. In an experimental library screening for adenosine A1 receptor agonists, PSICHIC discerned functional effects effectively, ranking the sole novel agonist within the top three. PSICHIC’s interpretable fingerprints identified protein residues and ligand atoms involved in interactions, and helped in unveiling selectivity determinants of protein–ligand interaction. We foresee PSICHIC reshaping virtual screening and deepening our understanding of protein–ligand interactions. Predicting the binding affinity between small-molecule ligands and proteins is a key task in drug discovery; however, sequence-based methods are often less accurate than structure-based ones. Koh et al. develop a graph neural network using physicochemical constraints that discovers interactions between small molecules and proteins directly from sequence data and that can achieve state-of-the-art performance without the need for costly, experimental 3D structures.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"6 6","pages":"673-687"},"PeriodicalIF":18.8,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141333577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovering neural policies to drive behaviour by integrating deep reinforcement learning agents with biological neural networks 通过整合深度强化学习代理与生物神经网络,发现驱动行为的神经政策
IF 18.8 1区 计算机科学
Nature Machine Intelligence Pub Date : 2024-06-14 DOI: 10.1038/s42256-024-00854-2
Chenguang Li, Gabriel Kreiman, Sharad Ramanathan
{"title":"Discovering neural policies to drive behaviour by integrating deep reinforcement learning agents with biological neural networks","authors":"Chenguang Li, Gabriel Kreiman, Sharad Ramanathan","doi":"10.1038/s42256-024-00854-2","DOIUrl":"10.1038/s42256-024-00854-2","url":null,"abstract":"Deep reinforcement learning (RL) has been successful in a variety of domains but has not yet been directly used to learn biological tasks by interacting with a living nervous system. As proof of principle, we show how to create such a hybrid system trained on a target-finding task. Using optogenetics, we interfaced the nervous system of the nematode Caenorhabditis elegans with a deep RL agent. Agents adapted to strikingly different sites of neural integration and learned site-specific activations to guide animals towards a target, including in cases where agents interfaced with sets of neurons with previously uncharacterized responses to optogenetic modulation. Agents were analysed by plotting their learned policies to understand how different sets of neurons were used to guide movement. Further, the animal and agent generalized to new environments using the same learned policies in food-search tasks, showing that the system achieved cooperative computation rather than the agent acting as a controller for a soft robot. Our system demonstrates that deep RL is a viable tool both for learning how neural circuits can produce goal-directed behaviour and for improving biologically relevant behaviour in a flexible way. Deep reinforcement learning (RL) has been successful in many fields but has not been used to directly improve behaviours by interfacing with living nervous systems. Li et al. present a framework that integrates deep RL agents with the nervous system of the nematode Caenorhabditis elegans. Their study shows that trained agents can assist animals in biologically relevant tasks and can be studied after training to map out effective neural policies.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"6 6","pages":"726-738"},"PeriodicalIF":18.8,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning efficient backprojections across cortical hierarchies in real time 实时学习大脑皮层中的高效反向推演
IF 18.8 1区 计算机科学
Nature Machine Intelligence Pub Date : 2024-06-06 DOI: 10.1038/s42256-024-00845-3
Kevin Max, Laura Kriener, Garibaldi Pineda García, Thomas Nowotny, Ismael Jaras, Walter Senn, Mihai A. Petrovici
{"title":"Learning efficient backprojections across cortical hierarchies in real time","authors":"Kevin Max, Laura Kriener, Garibaldi Pineda García, Thomas Nowotny, Ismael Jaras, Walter Senn, Mihai A. Petrovici","doi":"10.1038/s42256-024-00845-3","DOIUrl":"10.1038/s42256-024-00845-3","url":null,"abstract":"Models of sensory processing and learning in the cortex need to efficiently assign credit to synapses in all areas. In deep learning, a known solution is error backpropagation, which requires biologically implausible weight transport from feed-forwards to feedback paths. We introduce phaseless alignment learning, a bio-plausible method to learn efficient feedback weights in layered cortical hierarchies. This is achieved by exploiting the noise naturally found in biophysical systems as an additional carrier of information. In our dynamical system, all weights are learned simultaneously with always-on plasticity and using only information locally available to the synapses. Our method is completely phase-free (no forwards and backwards passes or phased learning) and allows for efficient error propagation across multi-layer cortical hierarchies, while maintaining biologically plausible signal transport and learning. Our method is applicable to a wide class of models and improves on previously known biologically plausible ways of credit assignment: compared to random synaptic feedback, it can solve complex tasks with fewer neurons and learn more useful latent representations. We demonstrate this on various classification tasks using a cortical microcircuit model with prospective coding. The credit assignment problem involves assigning credit to synapses in a neural network so that weights are updated appropriately and the circuit learns. Max et al. developed an efficient solution to the weight transport problem in networks of biophysical neurons. The method exploits noise as an information carrier and enables networks to learn to solve a task efficiently.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"6 6","pages":"619-630"},"PeriodicalIF":18.8,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141264732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generic protein–ligand interaction scoring by integrating physical prior knowledge and data augmentation modelling 通过整合物理先验知识和数据增强建模进行通用蛋白质配体相互作用评分
IF 18.8 1区 计算机科学
Nature Machine Intelligence Pub Date : 2024-06-06 DOI: 10.1038/s42256-024-00849-z
Duanhua Cao, Geng Chen, Jiaxin Jiang, Jie Yu, Runze Zhang, Mingan Chen, Wei Zhang, Lifan Chen, Feisheng Zhong, Yingying Zhang, Chenghao Lu, Xutong Li, Xiaomin Luo, Sulin Zhang, Mingyue Zheng
{"title":"Generic protein–ligand interaction scoring by integrating physical prior knowledge and data augmentation modelling","authors":"Duanhua Cao, Geng Chen, Jiaxin Jiang, Jie Yu, Runze Zhang, Mingan Chen, Wei Zhang, Lifan Chen, Feisheng Zhong, Yingying Zhang, Chenghao Lu, Xutong Li, Xiaomin Luo, Sulin Zhang, Mingyue Zheng","doi":"10.1038/s42256-024-00849-z","DOIUrl":"10.1038/s42256-024-00849-z","url":null,"abstract":"Developing robust methods for evaluating protein–ligand interactions has been a long-standing problem. Data-driven methods may memorize ligand and protein training data rather than learning protein–ligand interactions. Here we show a scoring approach called EquiScore, which utilizes a heterogeneous graph neural network to integrate physical prior knowledge and characterize protein–ligand interactions in equivariant geometric space. EquiScore is trained based on a new dataset constructed with multiple data augmentation strategies and a stringent redundancy-removal scheme. On two large external test sets, EquiScore consistently achieved top-ranking performance compared to 21 other methods. When EquiScore is used alongside different docking methods, it can effectively enhance the screening ability of these docking methods. EquiScore also showed good performance on the activity-ranking task of a series of structural analogues, indicating its potential to guide lead compound optimization. Finally, we investigated different levels of interpretability of EquiScore, which may provide more insights into structure-based drug design. Machine learning can improve scoring methods to evaluate protein–ligand interactions, but achieving good generalization is an outstanding challenge. Cao et al. introduce EquiScore, which is based on a graph neural network that integrates physical knowledge and is shown to have robust capabilities when applied to unseen protein targets.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"6 6","pages":"688-700"},"PeriodicalIF":18.8,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141264733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distributed constrained combinatorial optimization leveraging hypergraph neural networks 利用超图神经网络进行分布式约束组合优化
IF 18.8 1区 计算机科学
Nature Machine Intelligence Pub Date : 2024-05-30 DOI: 10.1038/s42256-024-00833-7
Nasimeh Heydaribeni, Xinrui Zhan, Ruisi Zhang, Tina Eliassi-Rad, Farinaz Koushanfar
{"title":"Distributed constrained combinatorial optimization leveraging hypergraph neural networks","authors":"Nasimeh Heydaribeni, Xinrui Zhan, Ruisi Zhang, Tina Eliassi-Rad, Farinaz Koushanfar","doi":"10.1038/s42256-024-00833-7","DOIUrl":"10.1038/s42256-024-00833-7","url":null,"abstract":"Scalable addressing of high-dimensional constrained combinatorial optimization problems is a challenge that arises in several science and engineering disciplines. Recent work introduced novel applications of graph neural networks for solving quadratic-cost combinatorial optimization problems. However, effective utilization of models such as graph neural networks to address general problems with higher-order constraints is an unresolved challenge. This paper presents a framework, HypOp, that advances the state of the art for solving combinatorial optimization problems in several aspects: (1) it generalizes the prior results to higher-order constrained problems with arbitrary cost functions by leveraging hypergraph neural networks; (2) it enables scalability to larger problems by introducing a new distributed and parallel training architecture; (3) it demonstrates generalizability across different problem formulations by transferring knowledge within the same hypergraph; (4) it substantially boosts the solution accuracy compared with the prior art by suggesting a fine-tuning step using simulated annealing; and (5) it shows remarkable progress on numerous benchmark examples, including hypergraph MaxCut, satisfiability and resource allocation problems, with notable run-time improvements using a combination of fine-tuning and distributed training techniques. We showcase the application of HypOp in scientific discovery by solving a hypergraph MaxCut problem on a National Drug Code drug-substance hypergraph. Through extensive experimentation on various optimization problems, HypOp demonstrates superiority over existing unsupervised-learning-based solvers and generic optimization methods. Bolstering the broad and deep applicability of graph neural networks, Heydaribeni et al. introduce HypOp, a framework that uses hypergraph neural networks to solve general constrained combinatorial optimization problems. The presented method scales and generalizes well, improves accuracy and outperforms existing solvers on various benchmarking examples.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"6 6","pages":"664-672"},"PeriodicalIF":18.8,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141177288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Empathic AI can’t get under the skin 感同身受的人工智能无法深入人心
IF 23.8 1区 计算机科学
Nature Machine Intelligence Pub Date : 2024-05-24 DOI: 10.1038/s42256-024-00850-6
{"title":"Empathic AI can’t get under the skin","authors":"","doi":"10.1038/s42256-024-00850-6","DOIUrl":"10.1038/s42256-024-00850-6","url":null,"abstract":"Personalized LLMs built with the capacity for emulating empathy are right around the corner. The effects on individual users needs careful consideration.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"6 5","pages":"495-495"},"PeriodicalIF":23.8,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42256-024-00850-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141096488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accurate and robust protein sequence design with CarbonDesign 利用 CarbonDesign 进行精确、稳健的蛋白质序列设计
IF 23.8 1区 计算机科学
Nature Machine Intelligence Pub Date : 2024-05-23 DOI: 10.1038/s42256-024-00838-2
Milong Ren, Chungong Yu, Dongbo Bu, Haicang Zhang
{"title":"Accurate and robust protein sequence design with CarbonDesign","authors":"Milong Ren, Chungong Yu, Dongbo Bu, Haicang Zhang","doi":"10.1038/s42256-024-00838-2","DOIUrl":"10.1038/s42256-024-00838-2","url":null,"abstract":"Protein sequence design is critically important for protein engineering. Despite recent advancements in deep learning-based methods, achieving accurate and robust sequence design remains a challenge. Here we present CarbonDesign, an approach that draws inspiration from successful ingredients of AlphaFold and which has been developed specifically for protein sequence design. At its core, CarbonDesign introduces Inverseformer, which learns representations from backbone structures and an amortized Markov random fields model for sequence decoding. Moreover, we incorporate other essential AlphaFold concepts into CarbonDesign: an end-to-end network recycling technique to leverage evolutionary constraints from protein language models and a multitask learning technique for generating side-chain structures alongside designed sequences. CarbonDesign outperforms other methods on independent test sets including the 15th Critical Assessment of protein Structure Prediction (CASP15) dataset, the Continuous Automated Model Evaluation (CAMEO) dataset and de novo proteins from RFDiffusion. Furthermore, it supports zero-shot prediction of the functional effects of sequence variants, making it a promising tool for applications in bioengineering. Deep learning has led to great advances in predicting protein structure from sequences. Ren and colleagues present here a method for the inverse problem of finding a sequence that results in a desired protein structure, which is inspired by various components of AlphaFold combined with Markov random fields to decode sequences more efficiently.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"6 5","pages":"536-547"},"PeriodicalIF":23.8,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141085633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum circuit synthesis with diffusion models 利用扩散模型进行量子电路合成
IF 23.8 1区 计算机科学
Nature Machine Intelligence Pub Date : 2024-05-20 DOI: 10.1038/s42256-024-00831-9
Florian Fürrutter, Gorka Muñoz-Gil, Hans J. Briegel
{"title":"Quantum circuit synthesis with diffusion models","authors":"Florian Fürrutter, Gorka Muñoz-Gil, Hans J. Briegel","doi":"10.1038/s42256-024-00831-9","DOIUrl":"10.1038/s42256-024-00831-9","url":null,"abstract":"Quantum computing has recently emerged as a transformative technology. Yet, its promised advantages rely on efficiently translating quantum operations into viable physical realizations. Here we use generative machine learning models, specifically denoising diffusion models (DMs), to facilitate this transformation. Leveraging text conditioning, we steer the model to produce desired quantum operations within gate-based quantum circuits. Notably, DMs allow to sidestep during training the exponential overhead inherent in the classical simulation of quantum dynamics—a consistent bottleneck in preceding machine learning techniques. We demonstrate the model’s capabilities across two tasks: entanglement generation and unitary compilation. The model excels at generating new circuits and supports typical DM extensions such as masking and editing to, for instance, align the circuit generation to the constraints of the targeted quantum device. Given their flexibility and generalization abilities, we envision DMs as pivotal in quantum circuit synthesis, both enhancing practical applications and providing insights into theoretical quantum computation. Achieving the promised advantages of quantum computing relies on translating quantum operations into physical realizations. Fürrutter and colleagues use diffusion models to create quantum circuits that are based on user specifications and tailored to experimental constraints.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"6 5","pages":"515-524"},"PeriodicalIF":23.8,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141073903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient learning of accurate surrogates for simulations of complex systems 高效学习复杂系统模拟的精确代用指标
IF 23.8 1区 计算机科学
Nature Machine Intelligence Pub Date : 2024-05-17 DOI: 10.1038/s42256-024-00839-1
A. Diaw, M. McKerns, I. Sagert, L. G. Stanton, M. S. Murillo
{"title":"Efficient learning of accurate surrogates for simulations of complex systems","authors":"A. Diaw, M. McKerns, I. Sagert, L. G. Stanton, M. S. Murillo","doi":"10.1038/s42256-024-00839-1","DOIUrl":"10.1038/s42256-024-00839-1","url":null,"abstract":"Machine learning methods are increasingly deployed to construct surrogate models for complex physical systems at a reduced computational cost. However, the predictive capability of these surrogates degrades in the presence of noisy, sparse or dynamic data. We introduce an online learning method empowered by optimizer-driven sampling that has two advantages over current approaches: it ensures that all local extrema (including endpoints) of the model response surface are included in the training data, and it employs a continuous validation and update process in which surrogates undergo retraining when their performance falls below a validity threshold. We find, using benchmark functions, that optimizer-directed sampling generally outperforms traditional sampling methods in terms of accuracy around local extrema even when the scoring metric is biased towards assessing overall accuracy. Finally, the application to dense nuclear matter demonstrates that highly accurate surrogates for a nuclear equation-of-state model can be reliably autogenerated from expensive calculations using few model evaluations. Machine learning-based surrogate models are important to model complex systems at a reduced computational cost; however, they must often be re-evaluated and adapted for validity on future data. Diaw and colleagues propose an online training method leveraging optimizer-directed sampling to produce surrogate models that can be applied to any future data and demonstrate the approach on a dense nuclear-matter equation of state containing a phase transition.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"6 5","pages":"568-577"},"PeriodicalIF":23.8,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140953368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Back to basics to open the black box 返璞归真,打开黑匣子
IF 23.8 1区 计算机科学
Nature Machine Intelligence Pub Date : 2024-05-17 DOI: 10.1038/s42256-024-00842-6
Diego Marcondes, Adilson Simonis, Junior Barrera
{"title":"Back to basics to open the black box","authors":"Diego Marcondes, Adilson Simonis, Junior Barrera","doi":"10.1038/s42256-024-00842-6","DOIUrl":"10.1038/s42256-024-00842-6","url":null,"abstract":"Most research efforts in machine learning focus on performance and are detached from an explanation of the behaviour of the model. We call for going back to basics of machine learning methods, with more focus on the development of a basic understanding grounded in statistical theory.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"6 5","pages":"498-501"},"PeriodicalIF":23.8,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140953389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信