{"title":"Sparse and transferable three-dimensional dynamic vascular reconstruction for instantaneous diagnosis","authors":"Yinheng Zhu, Yong Wang, Chunxia Di, Hanghang Liu, Fangzhou Liao, Shaohua Ma","doi":"10.1038/s42256-025-01025-7","DOIUrl":null,"url":null,"abstract":"<p>Three-dimensional (3D) structural information of cardiac vessels is crucial for the diagnosis and treatment of cardiovascular disease. In clinical practice, interventionalists have to empirically infer 3D cardiovascular topology from multi-view X-ray angiography images, which is time-consuming and requires extensive experience. Owing to the dynamic nature of heartbeats and sparse-view observations in clinical practice, accurate and efficient reconstruction of 3D cardiovascular structures from X-ray angiography images remains challenging. Here we introduce AutoCAR, a fully automated transfer learning-based algorithm for dynamic 3D cardiovascular reconstruction. AutoCAR comprises three main components: pose domain adaptation, sparse backwards projection and vascular graph optimization. By merging the X-ray angiography imaging parameter statistics of over 1,000 clinical cases into synthetic data generation, and exploiting the intrinsic spatial sparsity of cardiac vessels for computational design, AutoCAR outperforms state-of-the-art methods in both qualitative and quantitative evaluations, enabling dynamic cardiovascular reconstruction in real-world clinical settings. We envision that AutoCAR will facilitate current diagnostic and intervention procedures and pave the way for real-time visual guidance and autonomous catheter navigation in cardiac intervention.</p>","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"108 1","pages":""},"PeriodicalIF":18.8000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1038/s42256-025-01025-7","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Three-dimensional (3D) structural information of cardiac vessels is crucial for the diagnosis and treatment of cardiovascular disease. In clinical practice, interventionalists have to empirically infer 3D cardiovascular topology from multi-view X-ray angiography images, which is time-consuming and requires extensive experience. Owing to the dynamic nature of heartbeats and sparse-view observations in clinical practice, accurate and efficient reconstruction of 3D cardiovascular structures from X-ray angiography images remains challenging. Here we introduce AutoCAR, a fully automated transfer learning-based algorithm for dynamic 3D cardiovascular reconstruction. AutoCAR comprises three main components: pose domain adaptation, sparse backwards projection and vascular graph optimization. By merging the X-ray angiography imaging parameter statistics of over 1,000 clinical cases into synthetic data generation, and exploiting the intrinsic spatial sparsity of cardiac vessels for computational design, AutoCAR outperforms state-of-the-art methods in both qualitative and quantitative evaluations, enabling dynamic cardiovascular reconstruction in real-world clinical settings. We envision that AutoCAR will facilitate current diagnostic and intervention procedures and pave the way for real-time visual guidance and autonomous catheter navigation in cardiac intervention.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.