npj Flexible Electronics最新文献

筛选
英文 中文
Laser sintering of Cu particle-free inks for high-performance printed electronics
IF 14.6 1区 材料科学
npj Flexible Electronics Pub Date : 2025-03-04 DOI: 10.1038/s41528-025-00389-5
Nihesh Mohan, Juan Ignacio Ahuir-Torres, Hiren R. Kotadia, Gordon Elger
{"title":"Laser sintering of Cu particle-free inks for high-performance printed electronics","authors":"Nihesh Mohan, Juan Ignacio Ahuir-Torres, Hiren R. Kotadia, Gordon Elger","doi":"10.1038/s41528-025-00389-5","DOIUrl":"https://doi.org/10.1038/s41528-025-00389-5","url":null,"abstract":"<p>This study investigates laser sintering of Cu particle-free ink (Cu formate tetrahydrate—amino-2-propanol complex) as an alternative to conventional sintering in an oven (under inert/reducing atmosphere). Utilizing benefits of high-speed localized heating using laser, substrate damage can be prevented for low-melting substrates such as Polyethylene Terephthalate (PET). Firstly, a suitable sintering process window is achieved based on energy density for two different flexible polymeric susbtrates: Polyimide and PET using different laser parameters (laser power, scan rate and spot diameter). Subsequently, characterization of laser sintered traces are also made using different laser optic profiles (Gaussian and top hat). Different methodologies for fabrication of metallized Cu layer were also demonstrated. A very low bulk resistivity of 3.24 µΩcm (1.87 times of bulk Cu) was achieved on trace thickness of 0.85 ± 0.15 µm exhibiting good adherence to polymeric substrates. A promising fabrication process of low-cost and reliable flexible printed electronic devices is demonstrated.</p>","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":"26 1","pages":""},"PeriodicalIF":14.6,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143538536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrasensitive biosensing meta-garment via wetting gradient effect for heat-exhaustion warning
IF 14.6 1区 材料科学
npj Flexible Electronics Pub Date : 2025-03-04 DOI: 10.1038/s41528-025-00392-w
Ming Li, Ganghua Li, Zengqing Li, Yalin Tang, Ruidong Xu, Tong Xu, Yiwen Wang, Yuanyuan Liu, Lijun Qu, Binghao Wang, Yingkui Yang, Mingwei Tian
{"title":"Ultrasensitive biosensing meta-garment via wetting gradient effect for heat-exhaustion warning","authors":"Ming Li, Ganghua Li, Zengqing Li, Yalin Tang, Ruidong Xu, Tong Xu, Yiwen Wang, Yuanyuan Liu, Lijun Qu, Binghao Wang, Yingkui Yang, Mingwei Tian","doi":"10.1038/s41528-025-00392-w","DOIUrl":"https://doi.org/10.1038/s41528-025-00392-w","url":null,"abstract":"<p>Heat exhaustion is a prevalent heat-related illness among firefighters, posing a severe threat to life without timely intervention. However, current firefighter garments are limited by their singular functionality and cannot collect or analyze body fluid during rescue missions. Here, we introduce a wetting gradient effect assisted ultrasensitive meta-garment that incorporates multi-signal biomonitoring, offering an early warning system for heat exhaustion risk. This design enables real-time detection of heart rate, pH value, and the concentrations of glucose, sodium, and potassium in sweat. Benefiting from the surface energy difference, gradient wettability surfaces can be formed, allowing for precise point-to-point fluid control and regulation. Thus, the biosensing fibers require the lowest detection volume (0.1 μL) and fastest response time (1.4 s) reported to date. This innovative garment provides a practical solution for early health warning based on abnormal multi-biomarker changes, representing a significant advancement in firefighter safety.</p>","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":"5 1","pages":""},"PeriodicalIF":14.6,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143538350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stretchable optoelectronic synapses with ultraviolet to near-infrared perception for retina-inspired computing and vision-adaptive sensing 具有紫外线至近红外感知能力的可拉伸光电突触,用于视网膜启发计算和视觉自适应传感
IF 14.6 1区 材料科学
npj Flexible Electronics Pub Date : 2025-03-02 DOI: 10.1038/s41528-025-00390-y
Linfeng Lan, Bo Huang, Yaping Li, Churou Wang, Jiayi Pan, Jiale Huang, Baozhong Chen, Qi zhou, Longzhen Qiu, Yafei Ding, Qing Wan, Zhong Ji, Yuan Li, Junbiao Peng, Yong Cao
{"title":"Stretchable optoelectronic synapses with ultraviolet to near-infrared perception for retina-inspired computing and vision-adaptive sensing","authors":"Linfeng Lan, Bo Huang, Yaping Li, Churou Wang, Jiayi Pan, Jiale Huang, Baozhong Chen, Qi zhou, Longzhen Qiu, Yafei Ding, Qing Wan, Zhong Ji, Yuan Li, Junbiao Peng, Yong Cao","doi":"10.1038/s41528-025-00390-y","DOIUrl":"https://doi.org/10.1038/s41528-025-00390-y","url":null,"abstract":"<p>Stretchable optoelectronic synapses are attractive for intelligent perception, neuromorphic computation and visual adaptation. Here, we demonstrate a highly stretchable organic optoelectronic synaptic transistor (s-OOST) with a transconductance up to 86 mS that can simultaneously accept modulation of electrical pulses and multi-wavelength light signals (from ultraviolet to near-infrared). The s-OOST achieved highly reliable synaptic plasticity for brain-inspired computation and retina-inspired perception even under 50% tensile strain. Furthermore, the devices exibited vision-adaptive near-infrared sensing ability that was verified by single-pixel scanning imaging. Finally, the multi-wavelength (365 nm–1050 nm) optical synaptic properties were investigated under the applications of imaging memory, polychromatic optical communication and information security (coded by wavelength). This research advances the capabilities of the stretchable integrated systems with vision-adaptive sensing characteristic and computing-in-memory ability.</p>","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":"49 1","pages":""},"PeriodicalIF":14.6,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143528244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smart wireless flexible sensing system for unconstrained monitoring of ballistocardiogram and respiration
IF 14.6 1区 材料科学
npj Flexible Electronics Pub Date : 2025-03-01 DOI: 10.1038/s41528-025-00388-6
Zhihao Zhou, Yujie Jin, Jingjing Fu, Shaobo Si, Mingyang Liu, Yang Hu, Ji Gan, Yonggang Deng, Rui Li, Jun Yang
{"title":"Smart wireless flexible sensing system for unconstrained monitoring of ballistocardiogram and respiration","authors":"Zhihao Zhou, Yujie Jin, Jingjing Fu, Shaobo Si, Mingyang Liu, Yang Hu, Ji Gan, Yonggang Deng, Rui Li, Jun Yang","doi":"10.1038/s41528-025-00388-6","DOIUrl":"https://doi.org/10.1038/s41528-025-00388-6","url":null,"abstract":"<p>The ballistocardiogram (BCG) represents a promising unconstrained method for capturing cardiac vibrations, effectively mitigating the discomfort and activity limitations often associated with traditional long-term healthcare monitoring. Herein, we introduce a smart wireless flexible sensing system designed for the unconstrained monitoring of BCG and respiration. The core component of the system is a flexible pressure sensor featuring a gradient spherical crown microstructure design, which ensures high sensitivity to weak dynamic pressure signals even under high static pressure. This sensing capability enables the sensor, attached to the seat, to accurately capture subtle physiological signals from seated individuals. Furthermore, the system holds potential for assisting in the diagnosis of heart rate variability, providing new insights into the application of flexible sensors in the realm of unconstrained human health monitoring.</p>","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":"84 1","pages":""},"PeriodicalIF":14.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143526183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural flexible magnetic films for biometric encryption and tactile interaction in wearable devices
IF 14.6 1区 材料科学
npj Flexible Electronics Pub Date : 2025-02-28 DOI: 10.1038/s41528-025-00391-x
Runyi Deng, Xuejiao Li, Shiqian Cai, Yang Luo, Yangqianhui Zhang, Biyan Wang, Wenbiao Zhou, Huikai Xie, Guozhen Shen, Guofang Gong, Huayong Yang, Xiaoyi Wang, Dong Han
{"title":"Structural flexible magnetic films for biometric encryption and tactile interaction in wearable devices","authors":"Runyi Deng, Xuejiao Li, Shiqian Cai, Yang Luo, Yangqianhui Zhang, Biyan Wang, Wenbiao Zhou, Huikai Xie, Guozhen Shen, Guofang Gong, Huayong Yang, Xiaoyi Wang, Dong Han","doi":"10.1038/s41528-025-00391-x","DOIUrl":"https://doi.org/10.1038/s41528-025-00391-x","url":null,"abstract":"<p>Human fingers have fingerprints and mechanoreceptors for biometric information encryption and tactile perception. Ideally, electronic skin (e-skin) integrates identity information and tactile sensing, but this remains challenging. Research on encryption and tactile sensing rarely overlaps. Here, we report using magnetization structures and combinations of magnetic materials to achieve two types of functions: 6<sup><i>n</i> × <i>n</i></sup> invisible secure encryption is achieved through a <i>n</i> × <i>n</i> dipole magnetic array, and multipole magnets are used to achieve decoupling of pressure at various positions and sliding in different directions. The sliding distance ranges from 0 to 2.5 mm, with speeds between 5 and 25 mm/s. This study is based on flexible magnetic films, which have the potential to be used in wearable devices. The magnetic ring and signal detection modules verify the prospects of this fundamental principle in human-computer interaction (HCI) and demonstrate its applications in user identity recognition and tactile interaction.</p>","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":"51 1","pages":""},"PeriodicalIF":14.6,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143517993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silicon photodiode-competitive 2D vertical photodetector
IF 14.6 1区 材料科学
npj Flexible Electronics Pub Date : 2025-02-24 DOI: 10.1038/s41528-025-00386-8
Chengyun Hong, Ye Tao, Vu Khac Dat, Ji-Hee Kim
{"title":"Silicon photodiode-competitive 2D vertical photodetector","authors":"Chengyun Hong, Ye Tao, Vu Khac Dat, Ji-Hee Kim","doi":"10.1038/s41528-025-00386-8","DOIUrl":"https://doi.org/10.1038/s41528-025-00386-8","url":null,"abstract":"<p>Emerging two-dimensional (2D) materials offer significant potential for post-silicon photodetectors but often fall short of matching silicon photodiode performance. Here, we report a flexible, high-performance photodetector with a simple metal-2D semiconductor-metal structure by stacking Ti/WSe<sub>2</sub>/Ag layers on a mica substrate. The device demonstrates a low dark current of 0.8 pA, high external quantum efficiency of 49%, a broad linear dynamic range of 86 dB, wide spectral sensitivity (350–1200 nm), and ultrafast response speed (~1 μs rise/fall time by conventional measurement and 337 ps via ultrafast photocurrent method). These advances originate from efficient photocarrier extraction via an ultrashort channel and Schottky barriers facilitated by van der Waals contacts. Additionally, the device’s ultrathin (~200 nm) profile ensures exceptional bending durability, while encapsulation protects against ambient degradation. Our strategy here will promote the development of the post-silicon photodetector and foster next-generation flexible optoelectronic applications.</p><figure></figure>","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":"9 1","pages":""},"PeriodicalIF":14.6,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143477348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: An ultra-low power wake-Up timer compatible with n-FET based flexible technologies
IF 14.6 1区 材料科学
npj Flexible Electronics Pub Date : 2025-02-19 DOI: 10.1038/s41528-025-00384-w
D. Narbón, J. L. Soler-Fernández, A. Santos, P. Barquinha, R. Martins, A. Diéguez, J. D. Prades, O. Alonso
{"title":"Author Correction: An ultra-low power wake-Up timer compatible with n-FET based flexible technologies","authors":"D. Narbón, J. L. Soler-Fernández, A. Santos, P. Barquinha, R. Martins, A. Diéguez, J. D. Prades, O. Alonso","doi":"10.1038/s41528-025-00384-w","DOIUrl":"https://doi.org/10.1038/s41528-025-00384-w","url":null,"abstract":"<p>Correction to: <i>npj Flexible Electronics</i> https://doi.org/10.1038/s41528-024-00374-4, published online 12 January 2025</p>","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":"23 1","pages":""},"PeriodicalIF":14.6,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143451721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Image-based impedance spectroscopy for printed electronics
IF 14.6 1区 材料科学
npj Flexible Electronics Pub Date : 2025-02-19 DOI: 10.1038/s41528-025-00382-y
Eunsik Choi, Suwon Choi, Kunsik An, Kyung-Tae Kang
{"title":"Image-based impedance spectroscopy for printed electronics","authors":"Eunsik Choi, Suwon Choi, Kunsik An, Kyung-Tae Kang","doi":"10.1038/s41528-025-00382-y","DOIUrl":"https://doi.org/10.1038/s41528-025-00382-y","url":null,"abstract":"<p>The field of printed electronics has been extensively researched for its versatility and scalability in flexible and large-area applications. Impedance is of great importance for the performance and reliability of electronics. However, its measurement requires electrical contacts, which makes it difficult on complex or bio-interfaces. Although the printing process is accessible, impedance characterization may be cumbersome, which can create a bottleneck during the manufacturing process. This paper reports the first effort at developing a convolutional neural network (CNN) based image regression model to replace impedance spectroscopy (IS). In our study, the CNN model learned the features of inkjet-printed electrode images that are dependent on the printing and sintering of nanomaterials and quantitatively predicted the resistance and capacitance of the equivalent circuit of the inkjet-printed lines. The image-based impedance spectroscopy (IIS) is expected to be the cornerstone as a revolutionary approach to electronics research and development enabled by deep neural networks.</p>","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":"64 1","pages":""},"PeriodicalIF":14.6,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143443599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomimetic freestanding microfractals for flexible electronics
IF 14.6 1区 材料科学
npj Flexible Electronics Pub Date : 2025-02-14 DOI: 10.1038/s41528-025-00381-z
Amit Barua, Rituporn Gogoi, Pulikanti Guruprasad Reddy, Saman Jolaiy, Mahdi Bodaghi, Timo Laukkanen, Thomas Speck, Veikko Sariola, Vipul Sharma
{"title":"Biomimetic freestanding microfractals for flexible electronics","authors":"Amit Barua, Rituporn Gogoi, Pulikanti Guruprasad Reddy, Saman Jolaiy, Mahdi Bodaghi, Timo Laukkanen, Thomas Speck, Veikko Sariola, Vipul Sharma","doi":"10.1038/s41528-025-00381-z","DOIUrl":"https://doi.org/10.1038/s41528-025-00381-z","url":null,"abstract":"<p>The microfractals of leaf skeletons can be effective substrates for flexible electronics due to their high surface-to-volume ratio, transparency, breathability and flexibility. The challenge lies in replicating these fractal surfaces at the microscale in a way that is scalable, freestanding, and integrable with various materials. In this study, we present a novel method for the biomimetic microfabrication of leaf-skeleton-based fractal surfaces. We utilized a modified electrospinning method, replacing the fiber collector with a metalized biotic collector to replicate the microstructures. The biomimetic microfractals demonstrated ~90% replication accuracy, &gt;80% transparency, good stretchability, and breathability, and were freestanding. The method is versatile, allowing for the use of a wide range of polymers in biomimetic microfabrication. For application in flexible electronics, biomimetic conductive fractal patterns (BCFP) were fabricated by immobilizing Ag Nanowires (AgNW) using a simple spray-based method. The BCFP exhibited high conductivity with sheet resistances &lt;20 Ω sq<sup>–1</sup> while maintaining good transparencies. The BCFP adheres conformally to human skin, acting as an electronic skin (e-skin). To demonstrate the application, the BCFP was used to fabricate a tactile pressure sensor. In addition to their excellent transparency at low sheet resistances, stretchability, moisture resistance, and tight conformal bonding with the target surface, the BCFP also allows the evaporation of perspiration, making them suitable for long-term use as epidermal sensors. The application of BCFP in advanced bionic skin was demonstrated through gesture monitoring experiments.</p>","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":"115 1","pages":""},"PeriodicalIF":14.6,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143418363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomolecule sensors based on organic electrochemical transistors
IF 14.6 1区 材料科学
npj Flexible Electronics Pub Date : 2025-02-13 DOI: 10.1038/s41528-025-00383-x
Zhongyou Lu, Kun Xu, Kai Xiao, Qibin Xu, Li Wang, Peng Li, Jinhao Zhou, Dan Zhao, Libing Bai, Yuhua Cheng, Wei Huang
{"title":"Biomolecule sensors based on organic electrochemical transistors","authors":"Zhongyou Lu, Kun Xu, Kai Xiao, Qibin Xu, Li Wang, Peng Li, Jinhao Zhou, Dan Zhao, Libing Bai, Yuhua Cheng, Wei Huang","doi":"10.1038/s41528-025-00383-x","DOIUrl":"https://doi.org/10.1038/s41528-025-00383-x","url":null,"abstract":"<p>Biosensors based on organic electrochemical transistors (OECTs) have been a research highlight in recent years owing to their remarkable biocompatibility, low operating voltage, and substantial signal amplification capability. Especially, as an emerging fundamental device for biosensing, OECTs show great potential for pH, ions, molecules, and biomarker sensing. This review highlights the research progress of biomolecule sensors based on OECTs, focusing on recent publications in the past 5 years. Specifically, OECT-based biomolecule sensors for small molecules (glucose, dopamine, lactate, etc. that act as signals or effectors), and macromolecules (DNA, RNA, proteins, etc. that are often used as markers in physiology and medicine), are summarized. Additionally, emerging technologies and materials used to enhance sensitivity, detection limits, and detection ranges are described comprehensively. Last, aspects of OECT-based biomolecule sensors that need further improvement are discussed along with future opportunities and challenges.</p>","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":"67 1","pages":""},"PeriodicalIF":14.6,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143417336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信