{"title":"具有垂直相分离的高导电性聚合物,用于增强生物电子界面","authors":"Jiahuan Qiu, Yuyao Lu, Xinyuan Qian, Junxian Yao, Chengcan Han, Ziliang Wu, Hui Ye, Guorong Shan, Qiang Zheng, Kaichen Xu, Miao Du","doi":"10.1038/s41528-025-00441-4","DOIUrl":null,"url":null,"abstract":"<p>Conductive polymers like poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT: PSS) are key materials in bioelectronics, but balancing ultrahigh conductivity with long-term tissue contact stability remains a challenge. Here, we present a solvent-mediated solid-liquid interface doping strategy to engineer vertically phase-separated (VPS) PEDOT: PSS films. By adjusting thickness and doping solvents, a thicker PEDOT: PSS film with a strong VPS structure was achieved, featuring a higher PSS/PEDOT ratio on the surface and a lower ratio at the bottom. Doping the pristine film with a metastable liquid-liquid contact solution enables gradual PSS migration and a significant component gradient, yielding films with a hydrophilic surface and one of the highest reported conductivities ( ~ 8800 S cm<sup>−1</sup>) for bioelectronic devices. The films patterned by laser processing present high-fidelity signal acquisition, and excellent electrochemical stability. With low impedance and long-term biocompatibility, they are employed for real-time wearable and implantable sensors for electrophysiological monitoring, showcasing broad potentials in bioelectronics and human–machine interactions.</p>","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":"12 1","pages":""},"PeriodicalIF":12.3000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly conductive polymer with vertical phase separation for enhanced bioelectronic interfaces\",\"authors\":\"Jiahuan Qiu, Yuyao Lu, Xinyuan Qian, Junxian Yao, Chengcan Han, Ziliang Wu, Hui Ye, Guorong Shan, Qiang Zheng, Kaichen Xu, Miao Du\",\"doi\":\"10.1038/s41528-025-00441-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Conductive polymers like poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT: PSS) are key materials in bioelectronics, but balancing ultrahigh conductivity with long-term tissue contact stability remains a challenge. Here, we present a solvent-mediated solid-liquid interface doping strategy to engineer vertically phase-separated (VPS) PEDOT: PSS films. By adjusting thickness and doping solvents, a thicker PEDOT: PSS film with a strong VPS structure was achieved, featuring a higher PSS/PEDOT ratio on the surface and a lower ratio at the bottom. Doping the pristine film with a metastable liquid-liquid contact solution enables gradual PSS migration and a significant component gradient, yielding films with a hydrophilic surface and one of the highest reported conductivities ( ~ 8800 S cm<sup>−1</sup>) for bioelectronic devices. The films patterned by laser processing present high-fidelity signal acquisition, and excellent electrochemical stability. With low impedance and long-term biocompatibility, they are employed for real-time wearable and implantable sensors for electrophysiological monitoring, showcasing broad potentials in bioelectronics and human–machine interactions.</p>\",\"PeriodicalId\":48528,\"journal\":{\"name\":\"npj Flexible Electronics\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Flexible Electronics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41528-025-00441-4\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41528-025-00441-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
导电聚合物如聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐(PEDOT: PSS)是生物电子学中的关键材料,但平衡超高导电性和长期组织接触稳定性仍然是一个挑战。在这里,我们提出了一种溶剂介导的固液界面掺杂策略来设计垂直相分离(VPS) PEDOT: PSS薄膜。通过调整厚度和掺杂溶剂,得到了较厚的具有较强VPS结构的PEDOT: PSS膜,表面PSS/PEDOT比较高,底部PSS/PEDOT比较低。用亚稳液-液接触溶液掺杂原始膜,使PSS逐渐迁移和显著的组分梯度,得到具有亲水性表面和生物电子器件最高电导率之一(~ 8800 S cm−1)的膜。激光加工的薄膜具有高保真信号采集和优异的电化学稳定性。由于具有低阻抗和长期生物相容性,它们被用于电生理监测的实时可穿戴和可植入传感器,在生物电子学和人机交互方面显示出广阔的潜力。
Highly conductive polymer with vertical phase separation for enhanced bioelectronic interfaces
Conductive polymers like poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT: PSS) are key materials in bioelectronics, but balancing ultrahigh conductivity with long-term tissue contact stability remains a challenge. Here, we present a solvent-mediated solid-liquid interface doping strategy to engineer vertically phase-separated (VPS) PEDOT: PSS films. By adjusting thickness and doping solvents, a thicker PEDOT: PSS film with a strong VPS structure was achieved, featuring a higher PSS/PEDOT ratio on the surface and a lower ratio at the bottom. Doping the pristine film with a metastable liquid-liquid contact solution enables gradual PSS migration and a significant component gradient, yielding films with a hydrophilic surface and one of the highest reported conductivities ( ~ 8800 S cm−1) for bioelectronic devices. The films patterned by laser processing present high-fidelity signal acquisition, and excellent electrochemical stability. With low impedance and long-term biocompatibility, they are employed for real-time wearable and implantable sensors for electrophysiological monitoring, showcasing broad potentials in bioelectronics and human–machine interactions.
期刊介绍:
npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.