A. Mazzotta, S. Taccola, I. Cesini, M. Sanchez Sifuentes, R. A. Harris, V. Mattoli
{"title":"Low-voltage wearable tactile display with thermo-pneumatic actuation","authors":"A. Mazzotta, S. Taccola, I. Cesini, M. Sanchez Sifuentes, R. A. Harris, V. Mattoli","doi":"10.1038/s41528-025-00426-3","DOIUrl":null,"url":null,"abstract":"<p>Tactile displays often face challenges like high power consumption, bulky control systems, and limited portability, hindering their application in wearable technologies. This work presents a novel thermo-pneumatic tactile display that operates via localized heating of a small air volume, enabling low-voltage operation with standard batteries. Its fully portable design integrates control electronics into a wearable bracelet with Bluetooth activation, enhancing practicality. Mechanical tests demonstrated the device’s ability to generate forces exceeding 30 mN and displacements of tens of microns using pulsed signals with modulable durations and frequencies. User tests with voluntary participants confirmed its effectiveness as a tactile display, achieving 83% accuracy in recognizing Braille patterns. By addressing key limitations of traditional systems, this approach offers a promising solution for compact, low-power wearable tactile interfaces.</p>","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":"12 1","pages":""},"PeriodicalIF":12.3000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41528-025-00426-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Tactile displays often face challenges like high power consumption, bulky control systems, and limited portability, hindering their application in wearable technologies. This work presents a novel thermo-pneumatic tactile display that operates via localized heating of a small air volume, enabling low-voltage operation with standard batteries. Its fully portable design integrates control electronics into a wearable bracelet with Bluetooth activation, enhancing practicality. Mechanical tests demonstrated the device’s ability to generate forces exceeding 30 mN and displacements of tens of microns using pulsed signals with modulable durations and frequencies. User tests with voluntary participants confirmed its effectiveness as a tactile display, achieving 83% accuracy in recognizing Braille patterns. By addressing key limitations of traditional systems, this approach offers a promising solution for compact, low-power wearable tactile interfaces.
期刊介绍:
npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.