Network Neuroscience最新文献

筛选
英文 中文
Combined topological and spatial constraints are required to capture the structure of neural connectomes. 需要结合拓扑和空间约束来捕捉神经连接体的结构。
IF 3.6 3区 医学
Network Neuroscience Pub Date : 2025-03-05 eCollection Date: 2025-01-01 DOI: 10.1162/netn_a_00428
Anastasiya Salova, István A Kovács
{"title":"Combined topological and spatial constraints are required to capture the structure of neural connectomes.","authors":"Anastasiya Salova, István A Kovács","doi":"10.1162/netn_a_00428","DOIUrl":"10.1162/netn_a_00428","url":null,"abstract":"<p><p>Volumetric brain reconstructions provide an unprecedented opportunity to gain insights into the complex connectivity patterns of neurons in an increasing number of organisms. Here, we model and quantify the complexity of the resulting neural connectomes in the fruit fly, mouse, and human and unveil a simple set of shared organizing principles across these organisms. To put the connectomes in a physical context, we also construct contactomes, the network of neurons in physical contact in each organism. With these, we establish that physical constraints-either given by pairwise distances or the contactome-play a crucial role in shaping the network structure. For example, neuron positions are highly optimal in terms of distance from their neighbors. Yet, spatial constraints alone cannot capture the network topology, including the broad degree distribution. Conversely, the degree sequence alone is insufficient to recover the spatial structure. We resolve this apparent mismatch by formulating scalable maximum entropy models, incorporating both types of constraints. The resulting generative models have predictive power beyond the input data, as they capture several additional biological and network characteristics, like synaptic weights and graphlet statistics.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"9 1","pages":"181-206"},"PeriodicalIF":3.6,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949549/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143755245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Localization of the epileptogenic network from scalp EEG using a patient-specific whole-brain model. 利用患者特异性全脑模型定位头皮脑电图的致痫网络。
IF 3.6 3区 医学
Network Neuroscience Pub Date : 2025-03-03 eCollection Date: 2025-01-01 DOI: 10.1162/netn_a_00418
Mihai Dragos Maliia, Elif Köksal-Ersöz, Adrien Benard, Tristan Calas, Anca Nica, Yves Denoyer, Maxime Yochum, Fabrice Wendling, Pascal Benquet
{"title":"Localization of the epileptogenic network from scalp EEG using a patient-specific whole-brain model.","authors":"Mihai Dragos Maliia, Elif Köksal-Ersöz, Adrien Benard, Tristan Calas, Anca Nica, Yves Denoyer, Maxime Yochum, Fabrice Wendling, Pascal Benquet","doi":"10.1162/netn_a_00418","DOIUrl":"10.1162/netn_a_00418","url":null,"abstract":"<p><p>Computational modeling is a key tool for elucidating the neuronal mechanisms underlying epileptic activity. Despite considerable progress, existing models often lack realistic accuracy in representing electrophysiological epileptic activity. In this study, we used a comprehensive human brain model based on a neural mass model, which is tailored to the layered structure of the neocortex and incorporates patient-specific imaging data. This approach allowed the simulation of scalp EEGs in an epileptic patient suffering from type 2 focal cortical dysplasia (FCD). The simulation specifically addressed epileptic activity induced by FCD, faithfully reproducing intracranial interictal epileptiform discharges (IEDs) recorded with electrocorticography. For constructing the patient-specific scalp EEG, we carefully defined a clear delineation of the epileptogenic zone by numerical simulations to ensure fidelity to the topography, polarity, and diffusion characteristics of IEDs. This nuanced approach improves the accuracy of the simulated EEG signal, provides a more accurate representation of epileptic activity, and enhances our understanding of the mechanism behind the epileptogenic networks. The accuracy of the model was confirmed by a postoperative reevaluation with a secondary EEG simulation that was consistent with the lesion's removal. Ultimately, this personalized approach may prove instrumental in optimizing and tailoring epilepsy treatment strategies.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"9 1","pages":"18-37"},"PeriodicalIF":3.6,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949544/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143755084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tangent space functional reconfigurations in individuals at risk for alcohol use disorder. 酒精使用障碍风险个体的切线空间功能重构
IF 3.6 3区 医学
Network Neuroscience Pub Date : 2025-03-03 eCollection Date: 2025-01-01 DOI: 10.1162/netn_a_00419
Mahdi Moghaddam, Mario Dzemidzic, Daniel Guerrero, Mintao Liu, Jonathan Alessi, Martin H Plawecki, Jaroslaw Harezlak, David A Kareken, Joaquín Goñi
{"title":"Tangent space functional reconfigurations in individuals at risk for alcohol use disorder.","authors":"Mahdi Moghaddam, Mario Dzemidzic, Daniel Guerrero, Mintao Liu, Jonathan Alessi, Martin H Plawecki, Jaroslaw Harezlak, David A Kareken, Joaquín Goñi","doi":"10.1162/netn_a_00419","DOIUrl":"10.1162/netn_a_00419","url":null,"abstract":"<p><p>Human brain function dynamically adjusts to ever-changing stimuli from the external environment. Studies characterizing brain functional reconfiguration are, nevertheless, scarce. Here, we present a principled mathematical framework to quantify brain functional reconfiguration when engaging and disengaging from a stop signal task (SST). We apply tangent space projection (a Riemannian geometry mapping technique) to transform the functional connectomes (FCs) of 54 participants and quantify functional reconfiguration using the correlation distance of the resulting tangent-FCs. Our goal was to compare functional reconfigurations in individuals at risk for alcohol use disorder (AUD). We hypothesized that functional reconfigurations when transitioning to/from a task would be influenced by family history of AUD (FHA) and other AUD risk factors. Multilinear regression models showed that engaging and disengaging functional reconfiguration were associated with FHA and recent drinking. When <i>engaging</i> in the SST after a rest condition, functional reconfiguration was negatively associated with recent drinking, while functional reconfiguration when <i>disengaging</i> from the SST was negatively associated with FHA. In both models, several other factors contributed to the functional reconfiguration. This study demonstrates that tangent-FCs can characterize task-induced functional reconfiguration and that it is related to AUD risk.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"9 1","pages":"38-60"},"PeriodicalIF":3.6,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949615/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143755106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell-type-specific contributions to theta-gamma coupled rhythms in the hippocampus. 细胞类型特异性对海马体中θ - γ偶联节律的贡献。
IF 3.6 3区 医学
Network Neuroscience Pub Date : 2025-03-03 eCollection Date: 2025-01-01 DOI: 10.1162/netn_a_00427
Spandan Sengupta, Afroditi Talidou, Jeremie Lefebvre, Frances K Skinner
{"title":"Cell-type-specific contributions to theta-gamma coupled rhythms in the hippocampus.","authors":"Spandan Sengupta, Afroditi Talidou, Jeremie Lefebvre, Frances K Skinner","doi":"10.1162/netn_a_00427","DOIUrl":"10.1162/netn_a_00427","url":null,"abstract":"<p><p>Distinct inhibitory cell types participate in cognitively relevant nested brain rhythms, and particular changes in such rhythms are known to occur in disease states. Specifically, the coexpression of theta and gamma rhythms in the hippocampus is believed to represent a general coding scheme, but cellular-based generation mechanisms for these coupled rhythms are currently unclear. We develop a population rate model of the CA1 hippocampus that encompasses circuits of three inhibitory cell types (bistratified cells and parvalbumin [PV]-expressing and cholecystokinin [CCK]-expressing basket cells) and pyramidal cells to examine this. We constrain parameters and perform numerical and theoretical analyses. The theory, in combination with the numerical explorations, predicts circuit motifs and specific cell-type mechanisms that are essential for the coexistence of theta and gamma oscillations. We find that CCK-expressing basket cells initiate the coupled rhythms and regularize theta, and PV-expressing basket cells enhance both theta and gamma rhythms. Pyramidal and bistratified cells govern the generation of theta rhythms, and PV-expressing basket and pyramidal cells play dominant roles in controlling theta frequencies. Our circuit motifs for the theta-gamma coupled rhythm generation could be applicable to other brain regions.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"9 1","pages":"100-124"},"PeriodicalIF":3.6,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949547/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143755244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The control costs of human brain dynamics. 人脑动力学的控制成本。
IF 3.6 3区 医学
Network Neuroscience Pub Date : 2025-03-03 eCollection Date: 2025-01-01 DOI: 10.1162/netn_a_00425
Eric G Ceballos, Andrea I Luppi, Gabriel Castrillon, Manish Saggar, Bratislav Misic, Valentin Riedl
{"title":"The control costs of human brain dynamics.","authors":"Eric G Ceballos, Andrea I Luppi, Gabriel Castrillon, Manish Saggar, Bratislav Misic, Valentin Riedl","doi":"10.1162/netn_a_00425","DOIUrl":"10.1162/netn_a_00425","url":null,"abstract":"<p><p>The human brain is a complex system with high metabolic demands and extensive connectivity that requires control to balance energy consumption and functional efficiency over time. How this control is manifested on a whole-brain scale is largely unexplored, particularly what the associated costs are. Using the network control theory, here, we introduce a novel concept, time-averaged control energy (TCE), to quantify the cost of controlling human brain dynamics at rest, as measured from functional and diffusion MRI. Importantly, TCE spatially correlates with oxygen metabolism measures from the positron emission tomography, providing insight into the bioenergetic footing of resting-state control. Examining the temporal dimension of control costs, we find that brain state transitions along a hierarchical axis from sensory to association areas are more efficient in terms of control costs and more frequent within hierarchical groups than between. This inverse correlation between temporal control costs and state visits suggests a mechanism for maintaining functional diversity while minimizing energy expenditure. By unpacking the temporal dimension of control costs, we contribute to the neuroscientific understanding of how the brain governs its functionality while managing energy expenses.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"9 1","pages":"77-99"},"PeriodicalIF":3.6,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949579/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143755248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic brain states underlying advanced concentrative absorption meditation: A 7-T fMRI-intensive case study. 高级集中吸收冥想背后的动态大脑状态:一个7-T fmri强化案例研究。
IF 3.6 3区 医学
Network Neuroscience Pub Date : 2025-03-03 eCollection Date: 2025-01-01 DOI: 10.1162/netn_a_00432
Isaac N Treves, Winson F Z Yang, Terje Sparby, Matthew D Sacchet
{"title":"Dynamic brain states underlying advanced concentrative absorption meditation: A 7-T fMRI-intensive case study.","authors":"Isaac N Treves, Winson F Z Yang, Terje Sparby, Matthew D Sacchet","doi":"10.1162/netn_a_00432","DOIUrl":"10.1162/netn_a_00432","url":null,"abstract":"<p><p>Advanced meditation consists of states and stages of practice that unfold with mastery and time. Dynamic functional connectivity (DFC) analysis of fMRI could identify brain states underlying advanced meditation. We conducted an intensive DFC case study of a meditator who completed 27 runs of <i>jhāna</i> advanced absorptive concentration meditation (ACAM-J), concurrently with 7-T fMRI and phenomenological reporting. We identified three brain states that marked differences between ACAM-J and nonmeditative control conditions. These states were characterized as a DMN-anticorrelated brain state, a hyperconnected brain state, and a sparsely connected brain state. Our analyses indicate higher prevalence of the DMN-anticorrelated brain state during ACAM-J than control states, and the prevalence increased significantly with deeper ACAM-J states. The hyperconnected brain state was also more common during ACAM-J and was characterized by elevated thalamocortical connectivity and somatomotor network connectivity. The hyperconnected brain state significantly decreased over the course of ACAM-J, associating with self-reports of wider attention and diminished physical sensations. This brain state may be related to sensory awareness. Advanced meditators have developed well-honed abilities to move in and out of different altered states of consciousness, and this study provides initial evidence that functional neuroimaging can objectively track their dynamics.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"9 1","pages":"125-145"},"PeriodicalIF":3.6,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949543/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143755247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A telescopic independent component analysis on functional magnetic resonance imaging dataset. 功能磁共振成像数据集的伸缩独立分量分析。
IF 3.6 3区 医学
Network Neuroscience Pub Date : 2025-03-03 eCollection Date: 2025-01-01 DOI: 10.1162/netn_a_00421
Shiva Mirzaeian, Ashkan Faghiri, Vince D Calhoun, Armin Iraji
{"title":"A telescopic independent component analysis on functional magnetic resonance imaging dataset.","authors":"Shiva Mirzaeian, Ashkan Faghiri, Vince D Calhoun, Armin Iraji","doi":"10.1162/netn_a_00421","DOIUrl":"10.1162/netn_a_00421","url":null,"abstract":"<p><p>Brain function can be modeled as dynamic interactions between functional sources at different spatial scales, and each spatial scale can contain its functional sources with unique information, thus using a single scale may provide an incomplete view of brain function. This paper introduces a novel approach, termed \"telescopic independent component analysis (TICA),\" designed to construct spatial functional hierarchies and estimate functional sources across multiple spatial scales using fMRI data. The method employs a recursive independent component analysis (ICA) strategy, leveraging information from a larger network to guide the extraction of information about smaller networks. We apply our model to the default mode network (DMN), visual network (VN), and right frontoparietal network (RFPN). We investigate further on the DMN by evaluating the difference between healthy people and individuals with schizophrenia. We show that the TICA approach can detect the spatial hierarchy of the DMN, VN, and RFPN. In addition, the TICA revealed DMN-associated group differences between cohorts that may not be captured if we focus on a single-scale ICA. In sum, our proposed approach represents a promising new tool for studying functional sources.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"9 1","pages":"61-76"},"PeriodicalIF":3.6,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949590/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143755242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thalamocortical interactions reflecting the intensity of flicker light-induced visual hallucinatory phenomena. 反映闪烁光诱导的视幻觉现象强度的丘脑皮质相互作用。
IF 3.6 3区 医学
Network Neuroscience Pub Date : 2025-03-03 eCollection Date: 2025-01-01 DOI: 10.1162/netn_a_00417
Ioanna A Amaya, Till Nierhaus, Timo T Schmidt
{"title":"Thalamocortical interactions reflecting the intensity of flicker light-induced visual hallucinatory phenomena.","authors":"Ioanna A Amaya, Till Nierhaus, Timo T Schmidt","doi":"10.1162/netn_a_00417","DOIUrl":"10.1162/netn_a_00417","url":null,"abstract":"<p><p>Aberrant thalamocortical connectivity occurs together with visual hallucinations in various pathologies and drug-induced states, highlighting the need to better understand how thalamocortical interactions may contribute to hallucinatory phenomena. Flicker light stimulation (FLS) at 10-Hz reliably and selectively induces transient visual hallucinations in healthy participants. Arrhythmic flicker elicits fewer hallucinatory effects while delivering equal amounts of visual stimulation, together facilitating a well-controlled experimental setup to investigate the neural correlates of visual hallucinations driven by flicker rhythmicity. Using rhythmic and arrhythmic FLS during fMRI scanning, we found that rhythmic FLS elicited stronger activation in higher order visual cortices compared with arrhythmic control. Consistently, we found that rhythmic flicker selectively increased connectivity between ventroanterior thalamic nuclei and higher order visual cortices, which was also positively associated with the subjective intensity of visual hallucinatory effects. As these thalamic and cortical areas do not receive primary visual inputs, it suggests that the thalamocortical connectivity changes relate to a higher order function of the thalamus, such as in the coordination of cortical activity. In sum, we present novel evidence for the role of specific thalamocortical interactions with ventroanterior nuclei within visual hallucinatory experiences. Importantly, this can inform future clinical research into the mechanistic underpinnings of pathologic hallucinations.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"9 1","pages":"1-17"},"PeriodicalIF":3.6,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949548/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143755113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid dynamics of electrophysiological connectome states are heritable. 电生理连接组状态的快速动态具有遗传性。
IF 3.6 3区 医学
Network Neuroscience Pub Date : 2024-12-10 eCollection Date: 2024-01-01 DOI: 10.1162/netn_a_00391
Suhnyoung Jun, Thomas H Alderson, Stephen M Malone, Jeremy Harper, Ruskin H Hunt, Kathleen M Thomas, William G Iacono, Sylia Wilson, Sepideh Sadaghiani
{"title":"Rapid dynamics of electrophysiological connectome states are heritable.","authors":"Suhnyoung Jun, Thomas H Alderson, Stephen M Malone, Jeremy Harper, Ruskin H Hunt, Kathleen M Thomas, William G Iacono, Sylia Wilson, Sepideh Sadaghiani","doi":"10.1162/netn_a_00391","DOIUrl":"10.1162/netn_a_00391","url":null,"abstract":"<p><p>Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infraslow (<0.1 Hz) connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for cognition are poorly understood. Here, we asked whether rapid electrophysiological connectome dynamics constitute subject-specific brain traits and to what extent they are under genetic influence. Using source-localized EEG connectomes during resting state (<i>N</i> = 928, 473 females), we quantified the heritability of multivariate (multistate) features describing temporal or spatial characteristics of connectome dynamics. States switched rapidly every ∼60-500 ms. Temporal features were heritable, particularly Fractional Occupancy (in theta, alpha, beta, and gamma bands) and Transition Probability (in theta, alpha, and gamma bands), representing the duration spent in each state and the frequency of state switches, respectively. Genetic effects explained a substantial proportion of the phenotypic variance of these features: Fractional Occupancy in beta (44.3%) and gamma (39.8%) bands and Transition Probability in theta (38.4%), alpha (63.3%), beta (22.6%), and gamma (40%) bands. However, we found no evidence for the heritability of dynamic spatial features, specifically states' Modularity and connectivity pattern. We conclude that genetic effects shape individuals' connectome dynamics at rapid timescales, specifically states' overall occurrence and sequencing.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"8 4","pages":"1065-1088"},"PeriodicalIF":3.6,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11674403/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142903870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deconstructing the Mapper algorithm to extract richer topological and temporal features from functional neuroimaging data. 解构Mapper算法,从功能神经成像数据中提取更丰富的拓扑和时间特征。
IF 3.6 3区 医学
Network Neuroscience Pub Date : 2024-12-10 eCollection Date: 2024-01-01 DOI: 10.1162/netn_a_00403
Daniel Haşegan, Caleb Geniesse, Samir Chowdhury, Manish Saggar
{"title":"Deconstructing the Mapper algorithm to extract richer topological and temporal features from functional neuroimaging data.","authors":"Daniel Haşegan, Caleb Geniesse, Samir Chowdhury, Manish Saggar","doi":"10.1162/netn_a_00403","DOIUrl":"10.1162/netn_a_00403","url":null,"abstract":"<p><p>Capturing and tracking large-scale brain activity dynamics holds the potential to deepen our understanding of cognition. Previously, tools from topological data analysis, especially Mapper, have been successfully used to mine brain activity dynamics at the highest spatiotemporal resolutions. Even though it is a relatively established tool within the field of topological data analysis, Mapper results are highly impacted by parameter selection. Given that noninvasive human neuroimaging data (e.g., from fMRI) is typically fraught with artifacts and no gold standards exist regarding \"true\" state transitions, we argue for a thorough examination of Mapper parameter choices to better reveal their impact. Using synthetic data (with known transition structure) and real fMRI data, we explore a variety of parameter choices for each Mapper step, thereby providing guidance and heuristics for the field. We also release our parameter exploration toolbox as a software package to make it easier for scientists to investigate and apply Mapper to any dataset.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"8 4","pages":"1355-1382"},"PeriodicalIF":3.6,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675014/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142903655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信