Cell-type-specific contributions to theta-gamma coupled rhythms in the hippocampus.

IF 3.6 3区 医学 Q2 NEUROSCIENCES
Network Neuroscience Pub Date : 2025-03-03 eCollection Date: 2025-01-01 DOI:10.1162/netn_a_00427
Spandan Sengupta, Afroditi Talidou, Jeremie Lefebvre, Frances K Skinner
{"title":"Cell-type-specific contributions to theta-gamma coupled rhythms in the hippocampus.","authors":"Spandan Sengupta, Afroditi Talidou, Jeremie Lefebvre, Frances K Skinner","doi":"10.1162/netn_a_00427","DOIUrl":null,"url":null,"abstract":"<p><p>Distinct inhibitory cell types participate in cognitively relevant nested brain rhythms, and particular changes in such rhythms are known to occur in disease states. Specifically, the coexpression of theta and gamma rhythms in the hippocampus is believed to represent a general coding scheme, but cellular-based generation mechanisms for these coupled rhythms are currently unclear. We develop a population rate model of the CA1 hippocampus that encompasses circuits of three inhibitory cell types (bistratified cells and parvalbumin [PV]-expressing and cholecystokinin [CCK]-expressing basket cells) and pyramidal cells to examine this. We constrain parameters and perform numerical and theoretical analyses. The theory, in combination with the numerical explorations, predicts circuit motifs and specific cell-type mechanisms that are essential for the coexistence of theta and gamma oscillations. We find that CCK-expressing basket cells initiate the coupled rhythms and regularize theta, and PV-expressing basket cells enhance both theta and gamma rhythms. Pyramidal and bistratified cells govern the generation of theta rhythms, and PV-expressing basket and pyramidal cells play dominant roles in controlling theta frequencies. Our circuit motifs for the theta-gamma coupled rhythm generation could be applicable to other brain regions.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"9 1","pages":"100-124"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949547/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00427","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Distinct inhibitory cell types participate in cognitively relevant nested brain rhythms, and particular changes in such rhythms are known to occur in disease states. Specifically, the coexpression of theta and gamma rhythms in the hippocampus is believed to represent a general coding scheme, but cellular-based generation mechanisms for these coupled rhythms are currently unclear. We develop a population rate model of the CA1 hippocampus that encompasses circuits of three inhibitory cell types (bistratified cells and parvalbumin [PV]-expressing and cholecystokinin [CCK]-expressing basket cells) and pyramidal cells to examine this. We constrain parameters and perform numerical and theoretical analyses. The theory, in combination with the numerical explorations, predicts circuit motifs and specific cell-type mechanisms that are essential for the coexistence of theta and gamma oscillations. We find that CCK-expressing basket cells initiate the coupled rhythms and regularize theta, and PV-expressing basket cells enhance both theta and gamma rhythms. Pyramidal and bistratified cells govern the generation of theta rhythms, and PV-expressing basket and pyramidal cells play dominant roles in controlling theta frequencies. Our circuit motifs for the theta-gamma coupled rhythm generation could be applicable to other brain regions.

不同类型的抑制性细胞参与了与认知相关的嵌套大脑节律,而且已知这种节律在疾病状态下会发生特殊变化。具体来说,海马中θ和γ节律的共表达被认为代表了一种通用编码方案,但这些耦合节律的细胞生成机制目前尚不清楚。为了研究这个问题,我们建立了一个 CA1 海马群体率模型,其中包括三种抑制性细胞类型(双层细胞、表达副阀素[PV]和表达胆囊收缩素[CCK]的篮细胞)和锥体细胞的回路。我们对参数进行了限制,并进行了数值和理论分析。理论与数值探索相结合,预测了θ和γ振荡共存所必需的电路模式和特定细胞类型机制。我们发现,表达 CCK 的篮状细胞能启动耦合节律并使 Theta 正则化,而表达 PV 的篮状细胞能增强 Theta 和 gamma 节律。锥体细胞和双层细胞控制着θ节律的产生,而表达 PV 的篮状细胞和锥体细胞在控制θ频率方面起着主导作用。我们关于θ-γ耦合节律产生的电路模式可能适用于其他脑区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Network Neuroscience
Network Neuroscience NEUROSCIENCES-
CiteScore
6.40
自引率
6.40%
发文量
68
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信