Thalamocortical interactions reflecting the intensity of flicker light-induced visual hallucinatory phenomena.

IF 3.6 3区 医学 Q2 NEUROSCIENCES
Network Neuroscience Pub Date : 2025-03-03 eCollection Date: 2025-01-01 DOI:10.1162/netn_a_00417
Ioanna A Amaya, Till Nierhaus, Timo T Schmidt
{"title":"Thalamocortical interactions reflecting the intensity of flicker light-induced visual hallucinatory phenomena.","authors":"Ioanna A Amaya, Till Nierhaus, Timo T Schmidt","doi":"10.1162/netn_a_00417","DOIUrl":null,"url":null,"abstract":"<p><p>Aberrant thalamocortical connectivity occurs together with visual hallucinations in various pathologies and drug-induced states, highlighting the need to better understand how thalamocortical interactions may contribute to hallucinatory phenomena. Flicker light stimulation (FLS) at 10-Hz reliably and selectively induces transient visual hallucinations in healthy participants. Arrhythmic flicker elicits fewer hallucinatory effects while delivering equal amounts of visual stimulation, together facilitating a well-controlled experimental setup to investigate the neural correlates of visual hallucinations driven by flicker rhythmicity. Using rhythmic and arrhythmic FLS during fMRI scanning, we found that rhythmic FLS elicited stronger activation in higher order visual cortices compared with arrhythmic control. Consistently, we found that rhythmic flicker selectively increased connectivity between ventroanterior thalamic nuclei and higher order visual cortices, which was also positively associated with the subjective intensity of visual hallucinatory effects. As these thalamic and cortical areas do not receive primary visual inputs, it suggests that the thalamocortical connectivity changes relate to a higher order function of the thalamus, such as in the coordination of cortical activity. In sum, we present novel evidence for the role of specific thalamocortical interactions with ventroanterior nuclei within visual hallucinatory experiences. Importantly, this can inform future clinical research into the mechanistic underpinnings of pathologic hallucinations.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"9 1","pages":"1-17"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949548/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00417","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Aberrant thalamocortical connectivity occurs together with visual hallucinations in various pathologies and drug-induced states, highlighting the need to better understand how thalamocortical interactions may contribute to hallucinatory phenomena. Flicker light stimulation (FLS) at 10-Hz reliably and selectively induces transient visual hallucinations in healthy participants. Arrhythmic flicker elicits fewer hallucinatory effects while delivering equal amounts of visual stimulation, together facilitating a well-controlled experimental setup to investigate the neural correlates of visual hallucinations driven by flicker rhythmicity. Using rhythmic and arrhythmic FLS during fMRI scanning, we found that rhythmic FLS elicited stronger activation in higher order visual cortices compared with arrhythmic control. Consistently, we found that rhythmic flicker selectively increased connectivity between ventroanterior thalamic nuclei and higher order visual cortices, which was also positively associated with the subjective intensity of visual hallucinatory effects. As these thalamic and cortical areas do not receive primary visual inputs, it suggests that the thalamocortical connectivity changes relate to a higher order function of the thalamus, such as in the coordination of cortical activity. In sum, we present novel evidence for the role of specific thalamocortical interactions with ventroanterior nuclei within visual hallucinatory experiences. Importantly, this can inform future clinical research into the mechanistic underpinnings of pathologic hallucinations.

反映闪烁光诱导的视幻觉现象强度的丘脑皮质相互作用。
在各种病理和药物诱导的状态下,视幻觉与异常的丘脑皮质连通性一起发生,这突出了更好地理解丘脑皮质相互作用如何导致幻觉现象的必要性。10hz的闪烁光刺激(FLS)可靠而选择性地诱导健康参与者的短暂视幻觉。在提供等量的视觉刺激的同时,无节奏的闪烁引起的幻觉效果更少,共同促进了一个良好控制的实验设置,以研究由闪烁节律性驱动的视觉幻觉的神经相关性。在fMRI扫描中使用节律性和非节律性FLS,我们发现节律性FLS与非节律性对照相比在高阶视觉皮层中引起更强的激活。我们一致地发现,节律性闪烁选择性地增加了丘脑腹前核与高阶视觉皮层之间的连通性,这也与视觉幻觉效果的主观强度呈正相关。由于这些丘脑和皮质区域不接受初级视觉输入,这表明丘脑皮质连通性的变化与丘脑的高阶功能有关,例如皮质活动的协调。总之,我们提出了新的证据,证明了特定的丘脑皮质与腹前核的相互作用在视觉幻觉体验中的作用。重要的是,这可以为病理性幻觉的机制基础的未来临床研究提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Network Neuroscience
Network Neuroscience NEUROSCIENCES-
CiteScore
6.40
自引率
6.40%
发文量
68
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信