高级集中吸收冥想背后的动态大脑状态:一个7-T fmri强化案例研究。

IF 3.6 3区 医学 Q2 NEUROSCIENCES
Network Neuroscience Pub Date : 2025-03-03 eCollection Date: 2025-01-01 DOI:10.1162/netn_a_00432
Isaac N Treves, Winson F Z Yang, Terje Sparby, Matthew D Sacchet
{"title":"高级集中吸收冥想背后的动态大脑状态:一个7-T fmri强化案例研究。","authors":"Isaac N Treves, Winson F Z Yang, Terje Sparby, Matthew D Sacchet","doi":"10.1162/netn_a_00432","DOIUrl":null,"url":null,"abstract":"<p><p>Advanced meditation consists of states and stages of practice that unfold with mastery and time. Dynamic functional connectivity (DFC) analysis of fMRI could identify brain states underlying advanced meditation. We conducted an intensive DFC case study of a meditator who completed 27 runs of <i>jhāna</i> advanced absorptive concentration meditation (ACAM-J), concurrently with 7-T fMRI and phenomenological reporting. We identified three brain states that marked differences between ACAM-J and nonmeditative control conditions. These states were characterized as a DMN-anticorrelated brain state, a hyperconnected brain state, and a sparsely connected brain state. Our analyses indicate higher prevalence of the DMN-anticorrelated brain state during ACAM-J than control states, and the prevalence increased significantly with deeper ACAM-J states. The hyperconnected brain state was also more common during ACAM-J and was characterized by elevated thalamocortical connectivity and somatomotor network connectivity. The hyperconnected brain state significantly decreased over the course of ACAM-J, associating with self-reports of wider attention and diminished physical sensations. This brain state may be related to sensory awareness. Advanced meditators have developed well-honed abilities to move in and out of different altered states of consciousness, and this study provides initial evidence that functional neuroimaging can objectively track their dynamics.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"9 1","pages":"125-145"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949543/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dynamic brain states underlying advanced concentrative absorption meditation: A 7-T fMRI-intensive case study.\",\"authors\":\"Isaac N Treves, Winson F Z Yang, Terje Sparby, Matthew D Sacchet\",\"doi\":\"10.1162/netn_a_00432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advanced meditation consists of states and stages of practice that unfold with mastery and time. Dynamic functional connectivity (DFC) analysis of fMRI could identify brain states underlying advanced meditation. We conducted an intensive DFC case study of a meditator who completed 27 runs of <i>jhāna</i> advanced absorptive concentration meditation (ACAM-J), concurrently with 7-T fMRI and phenomenological reporting. We identified three brain states that marked differences between ACAM-J and nonmeditative control conditions. These states were characterized as a DMN-anticorrelated brain state, a hyperconnected brain state, and a sparsely connected brain state. Our analyses indicate higher prevalence of the DMN-anticorrelated brain state during ACAM-J than control states, and the prevalence increased significantly with deeper ACAM-J states. The hyperconnected brain state was also more common during ACAM-J and was characterized by elevated thalamocortical connectivity and somatomotor network connectivity. The hyperconnected brain state significantly decreased over the course of ACAM-J, associating with self-reports of wider attention and diminished physical sensations. This brain state may be related to sensory awareness. Advanced meditators have developed well-honed abilities to move in and out of different altered states of consciousness, and this study provides initial evidence that functional neuroimaging can objectively track their dynamics.</p>\",\"PeriodicalId\":48520,\"journal\":{\"name\":\"Network Neuroscience\",\"volume\":\"9 1\",\"pages\":\"125-145\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949543/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1162/netn_a_00432\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00432","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

高级冥想包括练习的状态和阶段,随着掌握和时间的推移而展开。fMRI的动态功能连接(DFC)分析可以识别高级冥想背后的大脑状态。我们对一名冥想者进行了深入的DFC案例研究,该冥想者完成了27次jhāna高级吸收性集中冥想(ACAM-J),同时进行了7-T功能磁共振成像和现象报告。我们确定了ACAM-J和非冥想控制条件之间的三种显著差异的大脑状态。这些状态的特征为dmn反相关脑状态、超连接脑状态和稀疏连接脑状态。我们的分析表明,在ACAM-J状态中,dmn反相关脑状态的患病率高于对照状态,并且随着ACAM-J状态的加深,患病率显著增加。在ACAM-J期间,大脑超连接状态也更为常见,其特征是丘脑皮质连通性和躯体运动网络连通性升高。在ACAM-J的过程中,大脑的超连接状态显著减少,与自我报告的更广泛的注意力和减少的身体感觉有关。这种大脑状态可能与感官意识有关。高级冥想者已经发展出了良好的能力,可以在不同的意识改变状态中进出,这项研究提供了初步的证据,证明功能性神经成像可以客观地追踪他们的动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic brain states underlying advanced concentrative absorption meditation: A 7-T fMRI-intensive case study.

Advanced meditation consists of states and stages of practice that unfold with mastery and time. Dynamic functional connectivity (DFC) analysis of fMRI could identify brain states underlying advanced meditation. We conducted an intensive DFC case study of a meditator who completed 27 runs of jhāna advanced absorptive concentration meditation (ACAM-J), concurrently with 7-T fMRI and phenomenological reporting. We identified three brain states that marked differences between ACAM-J and nonmeditative control conditions. These states were characterized as a DMN-anticorrelated brain state, a hyperconnected brain state, and a sparsely connected brain state. Our analyses indicate higher prevalence of the DMN-anticorrelated brain state during ACAM-J than control states, and the prevalence increased significantly with deeper ACAM-J states. The hyperconnected brain state was also more common during ACAM-J and was characterized by elevated thalamocortical connectivity and somatomotor network connectivity. The hyperconnected brain state significantly decreased over the course of ACAM-J, associating with self-reports of wider attention and diminished physical sensations. This brain state may be related to sensory awareness. Advanced meditators have developed well-honed abilities to move in and out of different altered states of consciousness, and this study provides initial evidence that functional neuroimaging can objectively track their dynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network Neuroscience
Network Neuroscience NEUROSCIENCES-
CiteScore
6.40
自引率
6.40%
发文量
68
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信