解构Mapper算法,从功能神经成像数据中提取更丰富的拓扑和时间特征。

IF 3.6 3区 医学 Q2 NEUROSCIENCES
Network Neuroscience Pub Date : 2024-12-10 eCollection Date: 2024-01-01 DOI:10.1162/netn_a_00403
Daniel Haşegan, Caleb Geniesse, Samir Chowdhury, Manish Saggar
{"title":"解构Mapper算法,从功能神经成像数据中提取更丰富的拓扑和时间特征。","authors":"Daniel Haşegan, Caleb Geniesse, Samir Chowdhury, Manish Saggar","doi":"10.1162/netn_a_00403","DOIUrl":null,"url":null,"abstract":"<p><p>Capturing and tracking large-scale brain activity dynamics holds the potential to deepen our understanding of cognition. Previously, tools from topological data analysis, especially Mapper, have been successfully used to mine brain activity dynamics at the highest spatiotemporal resolutions. Even though it is a relatively established tool within the field of topological data analysis, Mapper results are highly impacted by parameter selection. Given that noninvasive human neuroimaging data (e.g., from fMRI) is typically fraught with artifacts and no gold standards exist regarding \"true\" state transitions, we argue for a thorough examination of Mapper parameter choices to better reveal their impact. Using synthetic data (with known transition structure) and real fMRI data, we explore a variety of parameter choices for each Mapper step, thereby providing guidance and heuristics for the field. We also release our parameter exploration toolbox as a software package to make it easier for scientists to investigate and apply Mapper to any dataset.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"8 4","pages":"1355-1382"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675014/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deconstructing the Mapper algorithm to extract richer topological and temporal features from functional neuroimaging data.\",\"authors\":\"Daniel Haşegan, Caleb Geniesse, Samir Chowdhury, Manish Saggar\",\"doi\":\"10.1162/netn_a_00403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Capturing and tracking large-scale brain activity dynamics holds the potential to deepen our understanding of cognition. Previously, tools from topological data analysis, especially Mapper, have been successfully used to mine brain activity dynamics at the highest spatiotemporal resolutions. Even though it is a relatively established tool within the field of topological data analysis, Mapper results are highly impacted by parameter selection. Given that noninvasive human neuroimaging data (e.g., from fMRI) is typically fraught with artifacts and no gold standards exist regarding \\\"true\\\" state transitions, we argue for a thorough examination of Mapper parameter choices to better reveal their impact. Using synthetic data (with known transition structure) and real fMRI data, we explore a variety of parameter choices for each Mapper step, thereby providing guidance and heuristics for the field. We also release our parameter exploration toolbox as a software package to make it easier for scientists to investigate and apply Mapper to any dataset.</p>\",\"PeriodicalId\":48520,\"journal\":{\"name\":\"Network Neuroscience\",\"volume\":\"8 4\",\"pages\":\"1355-1382\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675014/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1162/netn_a_00403\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00403","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

捕捉和跟踪大规模的大脑活动动态有可能加深我们对认知的理解。以前,拓扑数据分析工具,特别是Mapper,已经成功地用于在最高时空分辨率下挖掘大脑活动动态。尽管Mapper是拓扑数据分析领域中一个相对成熟的工具,但它的结果受到参数选择的高度影响。鉴于非侵入性人类神经成像数据(例如,来自功能磁共振成像)通常充满了伪影,并且关于“真实”状态转换没有金标准存在,我们主张对Mapper参数选择进行彻底检查,以更好地揭示其影响。利用合成数据(已知过渡结构)和真实的fMRI数据,我们探索了每个Mapper步骤的各种参数选择,从而为该领域提供指导和启发。我们还将我们的参数探索工具箱作为软件包发布,使科学家更容易调查和应用Mapper到任何数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deconstructing the Mapper algorithm to extract richer topological and temporal features from functional neuroimaging data.

Capturing and tracking large-scale brain activity dynamics holds the potential to deepen our understanding of cognition. Previously, tools from topological data analysis, especially Mapper, have been successfully used to mine brain activity dynamics at the highest spatiotemporal resolutions. Even though it is a relatively established tool within the field of topological data analysis, Mapper results are highly impacted by parameter selection. Given that noninvasive human neuroimaging data (e.g., from fMRI) is typically fraught with artifacts and no gold standards exist regarding "true" state transitions, we argue for a thorough examination of Mapper parameter choices to better reveal their impact. Using synthetic data (with known transition structure) and real fMRI data, we explore a variety of parameter choices for each Mapper step, thereby providing guidance and heuristics for the field. We also release our parameter exploration toolbox as a software package to make it easier for scientists to investigate and apply Mapper to any dataset.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network Neuroscience
Network Neuroscience NEUROSCIENCES-
CiteScore
6.40
自引率
6.40%
发文量
68
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信