Underground Space最新文献

筛选
英文 中文
Influence of erosion voids and traffic loads on buried large-diameter reinforced concrete pipes 侵蚀空隙和交通荷载对埋地大直径钢筋混凝土管道的影响
IF 6.4 1区 工程技术
Underground Space Pub Date : 2024-01-04 DOI: 10.1016/j.undsp.2023.11.005
Ming Xu , Dawei Shen
{"title":"Influence of erosion voids and traffic loads on buried large-diameter reinforced concrete pipes","authors":"Ming Xu ,&nbsp;Dawei Shen","doi":"10.1016/j.undsp.2023.11.005","DOIUrl":"10.1016/j.undsp.2023.11.005","url":null,"abstract":"<div><p>Geotechnical centrifuge tests were conducted to examine the influence of invert voids and surface traffic loads on 1400 mm diameter reinforced concrete pipes buried with a shallow soil cover depth of 700 mm. Void formation beneath the pipe was simulated during centrifuge testing. The test results revealed that before void formation, the surface load directly above the middle of the pipe caused a significant increase in not only the circumferential bending moments but also the longitudinal bending moments, the latter of which was considerable and could not be ignored. Void formation beneath the middle of the pipe led to a reduction in both the circumferential bending moments and longitudinal bending moments at all measuring positions, i.e., crown, springline, and invert. The most significant reduction occurred at the invert, and there was even a reversal in the sign of the invert longitudinal bending moment. A comparison was made between centrifuge tests with erosion voids and surface loads at different horizontal positions, which had a marked influence even when the positions differed by half a pipe length. Joint rotation played an important role in relieving large bending moments of pipe barrels in a jointed pipeline when the void and surface load were located at the joint.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000023/pdfft?md5=1c8115ad2f81e06dc2dbad207c35efa1&pid=1-s2.0-S2467967424000023-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139394896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immersive visualization of 3D subsurface ground model developed from sparse boreholes using virtual reality (VR) 利用虚拟现实技术(VR)实现根据稀疏钻孔开发的三维地下模型的沉浸式可视化
IF 6.4 1区 工程技术
Underground Space Pub Date : 2024-01-04 DOI: 10.1016/j.undsp.2023.11.004
Borui Lyu, Yu Wang
{"title":"Immersive visualization of 3D subsurface ground model developed from sparse boreholes using virtual reality (VR)","authors":"Borui Lyu,&nbsp;Yu Wang","doi":"10.1016/j.undsp.2023.11.004","DOIUrl":"10.1016/j.undsp.2023.11.004","url":null,"abstract":"<div><p>Analytics and visualization of multi-dimensional and complex geo-data, such as three-dimensional (3D) subsurface ground models, is critical for development of underground space and design and construction of underground structures (e.g., tunnels, dams, and slopes) in engineering practices. Although complicated 3D subsurface ground models now can be developed from site investigation data (e.g., boreholes) which is often sparse in practice, it remains a great challenge to visualize a 3D subsurface ground model with sophisticated stratigraphic variations by conventional two-dimensional (2D) geological cross-sections. Virtual reality (VR) technology, which has an attractive capability of constructing a virtual environment that links to the physical world, has been rapidly developed and applied to visualization in various disciplines recently. Leveraging on the rapid development of VR, this study proposes a framework for immersive visualization of 3D subsurface ground models in geo-applications using VR technology. The 3D subsurface model is first developed from limited borehole data in a data-driven manner. Then, a VR system is developed using related software and hardware devices currently available in the markets for immersive visualization and interaction with the developed 3D subsurface ground model. The results demonstrate that VR visualization of the 3D subsurface ground model in an immersive environment has great potential in revolutionizing the geo-practices from 2D cross-sections to a 3D immersive virtual environment in digital era, particularly for the emerging digital twins.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000011/pdfft?md5=450c161b7b254da60e3f326fe1c5dcff&pid=1-s2.0-S2467967424000011-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139393072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Piezoelectric sensing method for segmental joint contact stress during shield tunnel construction 盾构隧道施工过程中分段接头接触应力的压电传感方法
IF 6.4 1区 工程技术
Underground Space Pub Date : 2023-12-28 DOI: 10.1016/j.undsp.2023.10.007
Guodong Jiang , Minghao Dai , Guozhu Zhang , Limin Gao
{"title":"Piezoelectric sensing method for segmental joint contact stress during shield tunnel construction","authors":"Guodong Jiang ,&nbsp;Minghao Dai ,&nbsp;Guozhu Zhang ,&nbsp;Limin Gao","doi":"10.1016/j.undsp.2023.10.007","DOIUrl":"10.1016/j.undsp.2023.10.007","url":null,"abstract":"<div><p>The emergence of curved shield tunnels poses a significant construction challenge. If the quality of the segment assembly is not guaranteed, many segment cracks and damage will result from the stress concentration. Sensing the contact stresses between segmental joints is necessary to improve the quality of segments assembled for shield tunnel construction. Polyvinylidene difluoride (PVDF) piezoelectric material was chosen for the sensor because it can convert contact stresses into electrical signals, allowing the state of the segmental joints to be effectively sensed. It matches the working environment between the segmental joints of the shield tunnel, where flexible structures such as rubber gaskets and force transfer pads are present. This study proposes a piezoelectric sensing method for segmental joints in shield tunnels and conducts laboratory tests, numerical analyses, and field tests to validate the feasibility of the method. The results indicate that the PVDF film sensor can effectively sense the entire compression process of the gasket with different amounts of compression. The piezoelectric cable sensor can effectively sense the joint offset direction of the gasket. For differently shaped sections, the variation in the force sensed by the piezoelectric cable sensors was different, as verified by numerical simulation. Through the field test, it was found that the average contact stress between the segmental joints was in the range of 1.2–1.8 MPa during construction of the curved shield tunnels. The location of the segmental joints and the type of segment affect the contact stress value. The field monitoring results show that piezoelectric sensing technology can be successfully applied during assembly of the segments for effective sensing of the contact stress.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967423001745/pdfft?md5=a2f1d202a84a4909db4dd8ae39dd2515&pid=1-s2.0-S2467967423001745-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139188375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation on the state of sand filling layer and the influence on segment deformation of immersed tunnels 沉管隧道砂填充层状态评估及对分段变形的影响
IF 6.4 1区 工程技术
Underground Space Pub Date : 2023-12-28 DOI: 10.1016/j.undsp.2023.10.008
Ziyao Xu , Ailan Che , Chao Su
{"title":"Evaluation on the state of sand filling layer and the influence on segment deformation of immersed tunnels","authors":"Ziyao Xu ,&nbsp;Ailan Che ,&nbsp;Chao Su","doi":"10.1016/j.undsp.2023.10.008","DOIUrl":"10.1016/j.undsp.2023.10.008","url":null,"abstract":"<div><p>The immersed tunnel is considered an effective solution for traffic problems across rivers and seas. The sand filling layer, as an important part of immersed tunnel foundation treatments, directly affects segment attitude stability. Due to difficulties in quality control of concealed construction and the complex hydrodynamic environment, the sand filling layer is prone to compaction defects, further leading to changes in segment attitude. However, limited by structural concealment and state complexity, most studies consider the sand filling layer part of the foundation to study its impact on settlement while neglecting its influence on segment attitude. This research proposes an evaluation method for the sand filling layer state based on elastic wave testing and the elastic wave characteristic parameters selected come from analysis of the time domain, frequency domain and time–frequency domain. By classifying the elastic wave characteristic parameters through the <em>K</em>-means clustering method, the relationship between the state of the sand filling layer and the elastic wave characteristic parameters is established. The state of the sand filling layer is divided into dense, incompact, and void. A numerical model is established based on the Guangzhou BI-UT immersed tunnel with incompact and void sand filling layer states to simulate deformation and torsion. The results indicate that the settlement of the tunnel segment is low in the eastern region and high in the western region due to the presence of a less dense sand filling layer, with a maximum differential settlement of 0.04 m. The evaluation method plays a crucial role in guiding the construction of immersed tube tunnels.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967423001769/pdfft?md5=5b0f00fe3d9799e04582e082c0394b58&pid=1-s2.0-S2467967423001769-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139192759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of cutterhead opening ratio on soil arching effect and face stability during tunnelling through non-uniform soils 开挖非均匀土隧道时,刀盘开口率对土拱效应和工作面稳定性的影响
IF 6.4 1区 工程技术
Underground Space Pub Date : 2023-12-28 DOI: 10.1016/j.undsp.2023.11.003
Xue-Jian Chen , Pei-Pei Fang , Qiu-Nan Chen , Jun Hu , Kai Yao , Yong Liu
{"title":"Influence of cutterhead opening ratio on soil arching effect and face stability during tunnelling through non-uniform soils","authors":"Xue-Jian Chen ,&nbsp;Pei-Pei Fang ,&nbsp;Qiu-Nan Chen ,&nbsp;Jun Hu ,&nbsp;Kai Yao ,&nbsp;Yong Liu","doi":"10.1016/j.undsp.2023.11.003","DOIUrl":"10.1016/j.undsp.2023.11.003","url":null,"abstract":"<div><p>Tunnelling has increasingly become an essential tool in the exploration of underground space. A typical construction problem is the face instability during tunnelling, posing a great threat to associated infrastructures. Tunnel face instability often occurs with the soil arching collapse. This study investigates the combined effect of cutterhead opening ratio and soil non-uniformity on soil arching effect and face stability, via conducting random finite-element analysis coupled with Monte–Carlo simulations. The results underscore that the face stability is strongly associated with the evolution of stress arch. The obtained stability factors in the uniform soils can serve as a reference for the design of support pressure in practical tunnelling engineering. In addition, non-uniform soils exhibit a lower stability factor than uniform soils, which implies that the latter likely yields an underestimated probability of face failure. The tunnel face is found to have a probability of failure more than 50% if the spatial non-uniformity of soil is ignored. In the end, a practical framework is established to determine factor of safety (FOS) corresponding to different levels of probability of face failure considering various opening ratios in non-uniform soils. The required FOS is 1.70 to limit the probability of face instability no more than 0.1%. Our findings can facilitate the prediction of probability of instability in the conventionally deterministic design of face pressure.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967423001757/pdfft?md5=47883d1714263672075b0eba518de05c&pid=1-s2.0-S2467967423001757-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139191001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transfer learning-based encoder-decoder model with visual explanations for infrastructure crack segmentation: New open database and comprehensive evaluation 基于迁移学习的编码器-解码器模型,用于基础设施裂缝分割的可视化解释:新的开放数据库和综合评估
IF 6.4 1区 工程技术
Underground Space Pub Date : 2023-12-28 DOI: 10.1016/j.undsp.2023.09.012
Fangyu Liu , Wenqi Ding , Yafei Qiao , Linbing Wang
{"title":"Transfer learning-based encoder-decoder model with visual explanations for infrastructure crack segmentation: New open database and comprehensive evaluation","authors":"Fangyu Liu ,&nbsp;Wenqi Ding ,&nbsp;Yafei Qiao ,&nbsp;Linbing Wang","doi":"10.1016/j.undsp.2023.09.012","DOIUrl":"10.1016/j.undsp.2023.09.012","url":null,"abstract":"<div><p>Contemporary demands necessitate the swift and accurate detection of cracks in critical infrastructures, including tunnels and pavements. This study proposed a transfer learning-based encoder-decoder method with visual explanations for infrastructure crack segmentation. Firstly, a vast dataset containing 7089 images was developed, comprising diverse conditions—simple and complex crack patterns as well as clean and rough backgrounds. Secondly, leveraging transfer learning, an encoder-decoder model with visual explanations was formulated, utilizing varied pre-trained convolutional neural network (CNN) as the encoder. Visual explanations were achieved through gradient-weighted class activation mapping (Grad-CAM) to interpret the CNN segmentation model. Thirdly, accuracy, complexity (computation and model), and memory usage assessed CNN feasibility in practical engineering. Model performance was gauged via prediction and visual explanation. The investigation encompassed hyperparameters, data augmentation, deep learning from scratch vs. transfer learning, segmentation model architectures, segmentation model encoders, and encoder pre-training strategies. Results underscored transfer learning's potency in enhancing CNN accuracy for crack segmentation, surpassing deep learning from scratch. Notably, encoder classification accuracy bore no significant correlation with CNN segmentation accuracy. Among all tested models, UNet-EfficientNet_B7 excelled in crack segmentation, harmonizing accuracy, complexity, memory usage, prediction, and visual explanation.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967423001733/pdfft?md5=e84501be3daf3b7e67ca1c30b3bf6be5&pid=1-s2.0-S2467967423001733-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139195648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid stacking ensemble algorithm and simulated annealing optimization for stability evaluation of underground entry-type excavations 混合堆叠集合算法和模拟退火优化用于地下进入式挖掘的稳定性评估
IF 6.4 1区 工程技术
Underground Space Pub Date : 2023-12-27 DOI: 10.1016/j.undsp.2023.11.002
Leilei Liu, Guoyan Zhao, Weizhang Liang, Zheng Jian
{"title":"Hybrid stacking ensemble algorithm and simulated annealing optimization for stability evaluation of underground entry-type excavations","authors":"Leilei Liu,&nbsp;Guoyan Zhao,&nbsp;Weizhang Liang,&nbsp;Zheng Jian","doi":"10.1016/j.undsp.2023.11.002","DOIUrl":"https://doi.org/10.1016/j.undsp.2023.11.002","url":null,"abstract":"<div><p>The stability of underground entry-type excavations (UETEs) is of paramount importance for ensuring the safety of mining operations. As more engineering cases are accumulated, machine learning (ML) has demonstrated great potential for the stability evaluation of UETEs. In this study, a hybrid stacking ensemble method aggregating support vector machine (SVM), <em>k</em>-nearest neighbor (KNN), decision tree (DT), random forest (RF), multilayer perceptron neural network (MLPNN) and extreme gradient boosting (XGBoost) algorithms was proposed to assess the stability of UETEs. Firstly, a total of 399 historical cases with two indicators were collected from seven mines. Subsequently, to pursue better evaluation performance, the hyperparameters of base learners (SVM, KNN, DT, RF, MLPNN and XGBoost) and meta learner (MLPNN) were tuned by combining a five-fold cross validation (CV) and simulated annealing (SA) approach. Based on the optimal hyperparameters configuration, the stacking ensemble models were constructed using the training set (75% of the data). Finally, the performance of the proposed approach was evaluated by two global metrics (accuracy and Cohen’s Kappa) and three within-class metrics (macro average of the precision, recall and <em>F</em><sub>1</sub>-score) on the test set (25% of the data). In addition, the evaluation results were compared with six base learners optimized by SA. The hybrid stacking ensemble algorithm achieved better comprehensive performance with the accuracy, Kappa coefficient, macro average of the precision, recall and <em>F</em><sub>1</sub>-score were 0.92, 0.851, 0.885, 0.88 and 0.883, respectively. The rock mass rating (RMR) had the most important influence on evaluation results. Moreover, the critical span graph (CSG) was updated based on the proposed model, representing a significant improvement compared with the previous studies. This study can provide valuable guidance for stability analysis and risk management of UETEs. However, it is necessary to consider more indicators and collect more extensive and balanced dataset to validate the model in future.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967423001721/pdfft?md5=7b75c2922aebc85919f6c39a2b7767d7&pid=1-s2.0-S2467967423001721-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139915051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of local openings on bearing behavior and failure mechanism of shield tunnel segments 局部开洞对盾构隧道节段承载行为和破坏机理的影响
IF 6.4 1区 工程技术
Underground Space Pub Date : 2023-12-23 DOI: 10.1016/j.undsp.2023.10.006
Xiaojing Gao , Pengfei Li , Mingju Zhang , Haifeng Wang , Ziqi Jia , Wu Feng
{"title":"Effect of local openings on bearing behavior and failure mechanism of shield tunnel segments","authors":"Xiaojing Gao ,&nbsp;Pengfei Li ,&nbsp;Mingju Zhang ,&nbsp;Haifeng Wang ,&nbsp;Ziqi Jia ,&nbsp;Wu Feng","doi":"10.1016/j.undsp.2023.10.006","DOIUrl":"10.1016/j.undsp.2023.10.006","url":null,"abstract":"<div><p>Local failures (loss of concrete or reinforcement) can severely compromise the bearing capacity of shield segments, damaging the tunnel structures. To investigate the effects of local openings on the bearing behavior and failure mechanism, four full-scale bending tests were conducted on specimens with different opening positions and diameters; monitoring of load, displacement, and concrete strain was performed during loading. The test results reveal that both the opening position and diameter significantly influence the bearing characteristics of the segment. The failure process includes four sequential stages distinguished by three critical loads, namely the cracking, failure, and ultimate loads. Subsequently, the numerical model of the local failure segment was established using the elastoplastic damage constitutive relation of the concrete and verified by inversing the full-scale test results. Based on the numerical model, parametric analyses were performed to comprehensively investigate the influences of the opening position, concrete loss, and reinforcement loss on the bending capacity. Furthermore, an analytical model was proposed, indicating that the opening position is the primary factor decreasing the bearing capacity, followed by the opening diameter and reinforcement loss. The results of this study can provide a theoretical basis for the safety assessment and remedial design of subway shield tunnels under extreme breakthrough conditions.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S246796742300171X/pdfft?md5=a50c50042e4dfc70bb4fa4dbd143acb9&pid=1-s2.0-S246796742300171X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139194154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical and theoretical analysis on soil arching effect of prefabricated piles as deep foundation pit supports 预制桩作为深基坑支护的土拱效应的数值和理论分析
IF 6.4 1区 工程技术
Underground Space Pub Date : 2023-12-23 DOI: 10.1016/j.undsp.2023.09.011
Qianwei Xu , Jinli Xie , Linhai Lu , Yongji Wang , Chaojun Wu , Qiang Meng
{"title":"Numerical and theoretical analysis on soil arching effect of prefabricated piles as deep foundation pit supports","authors":"Qianwei Xu ,&nbsp;Jinli Xie ,&nbsp;Linhai Lu ,&nbsp;Yongji Wang ,&nbsp;Chaojun Wu ,&nbsp;Qiang Meng","doi":"10.1016/j.undsp.2023.09.011","DOIUrl":"10.1016/j.undsp.2023.09.011","url":null,"abstract":"<div><p>This study presents a detailed investigation into the soil arching effects within deep foundation pits (DFPs), focusing on their mechanical behavior and implications for structural design. Through rigorous 3D finite element modeling and parameter sensitivity analyses, the research explores the formation, geometric characteristics, and spatial distribution of soil arching phenomena. The investigation encompasses the influence of key parameters such as elastic modulus, cohesion, and internal friction angle on the soil arching effect. The findings reveal that soil arching within DFPs exhibits distinct spatial characteristics, with the prominent arch axis shifting as excavation depth progresses. Optimal soil arching is observed when the pile spacing approximates three times the pile diameter, enhancing soil retention and minimizing deformation risks. Sensitivity analyses highlight the significant impact of soil parameters on soil arching behavior, underscoring the critical role of cohesive forces and internal friction angles in shaping arching characteristics. By elucidating the interplay between soil parameters and soil arching effects, the research provides insights for optimizing pile spacing and structural stability.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967423001708/pdfft?md5=4584d1865983974942aee3ee1d28ca52&pid=1-s2.0-S2467967423001708-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139195770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-dimensional hydro-mechanical coupling numerical simulation of shield-driven cross-river twin tunnels: A case study 盾构驱动过江双线隧道的三维水力机械耦合数值模拟:案例研究
IF 6.4 1区 工程技术
Underground Space Pub Date : 2023-12-21 DOI: 10.1016/j.undsp.2023.09.010
Chengwen Wang , Xiaoli Liu , Danqing Song , Enzhi Wang , Guohui Yan , Ran Zhou
{"title":"Three-dimensional hydro-mechanical coupling numerical simulation of shield-driven cross-river twin tunnels: A case study","authors":"Chengwen Wang ,&nbsp;Xiaoli Liu ,&nbsp;Danqing Song ,&nbsp;Enzhi Wang ,&nbsp;Guohui Yan ,&nbsp;Ran Zhou","doi":"10.1016/j.undsp.2023.09.010","DOIUrl":"10.1016/j.undsp.2023.09.010","url":null,"abstract":"<div><p>With the rapid development of urban underground space, the construction of shield-driven cross-river twin tunnels is increasing, and the complex hydro-mechanical coupling effects and twin-tunnel interactions bring huge construction risks to such projects, which have attracted more and more attention. This study aims to understand the excavation effects induced by shield driving of cross-river twin tunnels through numerical simulation. A refined three-dimensional numerical model based on the fully coupled hydro-mechanical theory is established. The model considers the main components of the slurry pressure balance shield (SPBS) machine, including support force, jacking thrust, grouting pressure, shield-rock interaction and lining-grouting interaction, as well as the detailed construction process. The purpose is to examine the excavation effects during construction, including rock deformation around tunnels, the change in pore pressure, and the response of the lining. The results show the influence range of twin-tunnel excavation on rock deformation and pore pressure, as well as the modes of lining response. In addition, this study also systematically investigates the effects of water level fluctuation and burial depth on twin-tunnel excavation. The results indicate that the increase of water level or burial depth will enhance the excavation effects and strengthen the twin-tunnel interactions. These results provide useful insights for estimating the construction impact range and degree of twin tunnels, and serve as basic references for the design of cross-river twin tunnels.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967423001691/pdfft?md5=27fd48df41a88ef77ed706bf7cb6b729&pid=1-s2.0-S2467967423001691-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139018554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信