Jiaxin Liang , Wei Liu , Xinsheng Yin , Wentao Li , Zhe Yang , Jichen Yang
{"title":"盾构隧道尾部注浆在地层中的性能试验研究","authors":"Jiaxin Liang , Wei Liu , Xinsheng Yin , Wentao Li , Zhe Yang , Jichen Yang","doi":"10.1016/j.undsp.2024.07.001","DOIUrl":null,"url":null,"abstract":"<div><div>Shield tail grouting is an important measure to control tunnelling-induced ground deformation by injecting prepared grouting materials to fill the tail gap. The working performance of grout is usually invisible and hard to obtain in construction. This paper carries out an experimental study to investigate the tail grout behavior in ground. In the current research, a testing device is developed to explore the grout behavior in varying soils. The grout working performance is evaluated not only by the liquid grout properties such as fluidity, consistency, bleeding rate, stone rate and compressed deformation but also solid grout properties such as unconfined compressive strength and permeability. Three typical grouts are chosen and their behaviors in the various soils are observed. To take an insight on the behaviors, scanning electron microscopy and mercury intrusion porosimetry analysis are employed. The microstructure of solid grout is a sign of its working performance. The observation shows that the solid grout micro-structure is influenced by grout proportions, pressure, and ground permeabilities. The experimental results are applied in the case of Beijing Metro Line 12 for validation and as a result, the ground movement is inhibited due to high performance of tail grout.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"20 ","pages":"Pages 277-292"},"PeriodicalIF":8.2000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on the performance of shield tunnel tail grout in ground\",\"authors\":\"Jiaxin Liang , Wei Liu , Xinsheng Yin , Wentao Li , Zhe Yang , Jichen Yang\",\"doi\":\"10.1016/j.undsp.2024.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Shield tail grouting is an important measure to control tunnelling-induced ground deformation by injecting prepared grouting materials to fill the tail gap. The working performance of grout is usually invisible and hard to obtain in construction. This paper carries out an experimental study to investigate the tail grout behavior in ground. In the current research, a testing device is developed to explore the grout behavior in varying soils. The grout working performance is evaluated not only by the liquid grout properties such as fluidity, consistency, bleeding rate, stone rate and compressed deformation but also solid grout properties such as unconfined compressive strength and permeability. Three typical grouts are chosen and their behaviors in the various soils are observed. To take an insight on the behaviors, scanning electron microscopy and mercury intrusion porosimetry analysis are employed. The microstructure of solid grout is a sign of its working performance. The observation shows that the solid grout micro-structure is influenced by grout proportions, pressure, and ground permeabilities. The experimental results are applied in the case of Beijing Metro Line 12 for validation and as a result, the ground movement is inhibited due to high performance of tail grout.</div></div>\",\"PeriodicalId\":48505,\"journal\":{\"name\":\"Underground Space\",\"volume\":\"20 \",\"pages\":\"Pages 277-292\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Underground Space\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2467967424000862\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967424000862","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Experimental study on the performance of shield tunnel tail grout in ground
Shield tail grouting is an important measure to control tunnelling-induced ground deformation by injecting prepared grouting materials to fill the tail gap. The working performance of grout is usually invisible and hard to obtain in construction. This paper carries out an experimental study to investigate the tail grout behavior in ground. In the current research, a testing device is developed to explore the grout behavior in varying soils. The grout working performance is evaluated not only by the liquid grout properties such as fluidity, consistency, bleeding rate, stone rate and compressed deformation but also solid grout properties such as unconfined compressive strength and permeability. Three typical grouts are chosen and their behaviors in the various soils are observed. To take an insight on the behaviors, scanning electron microscopy and mercury intrusion porosimetry analysis are employed. The microstructure of solid grout is a sign of its working performance. The observation shows that the solid grout micro-structure is influenced by grout proportions, pressure, and ground permeabilities. The experimental results are applied in the case of Beijing Metro Line 12 for validation and as a result, the ground movement is inhibited due to high performance of tail grout.
期刊介绍:
Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.