Underground Space最新文献

筛选
英文 中文
Effects of geothermal temperature on smoke dynamics in construction tunnel fires 地温对施工隧道火灾烟气动力学的影响
IF 8.3 1区 工程技术
Underground Space Pub Date : 2025-09-16 DOI: 10.1016/j.undsp.2025.05.004
Chuangang Fan , Xiaoxian Fei , Maozhen Liu , Jiayi Ha , Linbo Du , Zhi Li , Yuhao Li , Dia Luan
{"title":"Effects of geothermal temperature on smoke dynamics in construction tunnel fires","authors":"Chuangang Fan ,&nbsp;Xiaoxian Fei ,&nbsp;Maozhen Liu ,&nbsp;Jiayi Ha ,&nbsp;Linbo Du ,&nbsp;Zhi Li ,&nbsp;Yuhao Li ,&nbsp;Dia Luan","doi":"10.1016/j.undsp.2025.05.004","DOIUrl":"10.1016/j.undsp.2025.05.004","url":null,"abstract":"<div><div>The development of traffic networks in mountainous areas has led to an increasing number of tunnels being constructed in regions of high geothermal activity. This study examined the effects of geothermal temperature, heat release rate, and fire source location on temperature distribution and smoke movement in construction tunnel fires through a series of scaled-down experiments. Results showed that geothermal conditions heat the air, creating layered flow within construction tunnels. The temperature and velocity of the induced airflow along the tunnel length were characterized. The upper airflow caused by geothermal conditions hinders the spread of smoke toward the tunnel face, resulting in a complex thermal stratification phenomenon. A model for predicting the smoke diffusion length upstream of the fire source was developed, considering geothermal temperature, heat release rate, and fire source location. Additionally, the ceiling temperature distribution was analyzed, showing that downstream temperature decay is insensitive to fire location, while upstream temperature decay can be divided into geothermal-affected and non-affected zones based on the fire source position. Prediction models for the ceiling temperature distribution upstream and downstream were established, respectively. These findings enhance the understanding of smoke dynamics in construction tunnel fires under high geothermal conditions.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"25 ","pages":"Pages 1-18"},"PeriodicalIF":8.3,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145227709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formation mechanism of the structural ring for tunnels in horizontal layered rock with high geostress 高地应力水平层状岩体隧道结构环形成机理
IF 8.3 1区 工程技术
Underground Space Pub Date : 2025-09-05 DOI: 10.1016/j.undsp.2025.05.002
Zhenyu Sun, Dingli Zhang, Muyang Li, Huiruo Wu
{"title":"Formation mechanism of the structural ring for tunnels in horizontal layered rock with high geostress","authors":"Zhenyu Sun,&nbsp;Dingli Zhang,&nbsp;Muyang Li,&nbsp;Huiruo Wu","doi":"10.1016/j.undsp.2025.05.002","DOIUrl":"10.1016/j.undsp.2025.05.002","url":null,"abstract":"<div><div>Tunnelling in layered rock with high geostress can cause large deformation disasters, and the reasonable countermeasures rely on a full understanding of the self-bearing capacity of the surrounding rock. In this article, the structural ring concept was introduced to represent the load-bearing capacity of the horizontal layered surrounding rock, whose formation mechanism and determination method were analyzed. Firstly, the mechanical response characteristics of the horizontal layered surrounding rock due to excavation were analyzed. Based on the stress transfer mechanism, the new concept of the structural ring which is a closed structure with a certain thickness was presented. Taking the stress element as the basic analytical model, the maximum increase ratio of the compressive stress was adopted to characterize the structural ring. Then the determination method and its implementation algorithm of the structural ring boundaries were proposed, based on which the beam-arch property of the layered rock was investigated. A series of model tests were carried out to validate the proposed structural ring concept and its determination method. Parametric studies were conducted to illustrate the effect of geological conditions and tunnel geometry on the position and shape of structural rings. Furthermore, the application of the structural ring concept in support design was discussed. It was found that the structural ring was usually oval-shaped with the major axis direction consistent with the dominant in-situ stress. Rock layers had a significant effect on the structural ring, and the beam-arch property was affected by the interlayers and bedding spacing. The support system was beneficial for the formation of the structural ring, which should be designed to balance the support capacity and the stability of the structural ring.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"24 ","pages":"Pages 387-411"},"PeriodicalIF":8.3,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145104697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-fidelity knowledge inheritance with active querying for data-driven clogging prediction during mechanized tunneling 基于主动查询的多保真度知识继承技术在机械化隧道掘进过程中的应用
IF 8.3 1区 工程技术
Underground Space Pub Date : 2025-08-26 DOI: 10.1016/j.undsp.2025.04.010
Xiao Yuan , Shuying Wang , Tongming Qu , Huanhuan Feng , Pengfei Liu , Junhao Zeng
{"title":"Multi-fidelity knowledge inheritance with active querying for data-driven clogging prediction during mechanized tunneling","authors":"Xiao Yuan ,&nbsp;Shuying Wang ,&nbsp;Tongming Qu ,&nbsp;Huanhuan Feng ,&nbsp;Pengfei Liu ,&nbsp;Junhao Zeng","doi":"10.1016/j.undsp.2025.04.010","DOIUrl":"10.1016/j.undsp.2025.04.010","url":null,"abstract":"<div><div>Muck clogging during shield tunneling often leads to reduced construction efficiency, increased costs and potential safety hazards. Traditional methods for predicting muck clogging primarily rely on the operator’s experience and conventional risk maps, but have limitations in dealing with complex construction conditions. To address these issues, this study presents a Monte-Carlo dropout (MCD)-assisted multi-fidelity neural network (MFNN) framework for effective prediction of muck clogging risk. First, a low-fidelity model is trained based on synthesized data using clogging risk maps. Subsequently, in-situ tunneling data are used as high-fidelity data to train multi-fidelity models. MCD serves to evaluate the uncertainty of the MFNN’s inference, combined with an active learning strategy to refine the low-fidelity model via iterative training of the high-fidelity model. Experimental results show that the MCD-assisted MFNN framework captures clogging features more effectively than traditional machine learning models that use only single-fidelity data, especially in scenarios with imbalanced data. This study provides a viable solution for complex problems in shield tunneling by fully utilizing both experiential knowledge accumulated in engineering practice and field monitoring data, demonstrating the potential of integrating knowledge and data in tackling some challenges that were previously unresolved.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"24 ","pages":"Pages 371-386"},"PeriodicalIF":8.3,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145010329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interlayer soil settlement prediction in the construction of under-crossing existing structures based on multi-parameter time series model 基于多参数时间序列模型的下穿既有结构施工层间土体沉降预测
IF 8.3 1区 工程技术
Underground Space Pub Date : 2025-08-11 DOI: 10.1016/j.undsp.2025.04.009
Boyu Jiang, Haibin Wei, Dongsheng Wei, Zipeng Ma, Fuyu Wang
{"title":"Interlayer soil settlement prediction in the construction of under-crossing existing structures based on multi-parameter time series model","authors":"Boyu Jiang,&nbsp;Haibin Wei,&nbsp;Dongsheng Wei,&nbsp;Zipeng Ma,&nbsp;Fuyu Wang","doi":"10.1016/j.undsp.2025.04.009","DOIUrl":"10.1016/j.undsp.2025.04.009","url":null,"abstract":"<div><div>Predicting surface settlement can identify potential risks associated in shield construction. However, in the construction of under-crossing existing structures, the surface settlement is minimal due to the high stiffness of the existing structure, making it unsuitable as a basis for risk assessment. Therefore, interlayer soil settlement was used as an evaluation index in this paper, which was predicted by the developed multi-parameter time series (MPTS) model. This model establishes new dataset, including time, effective stress ratio (ESR), mechanical fluctuation coefficient (MFC), and interlayer soil settlement, where ESR and MFC take into account the changing geological conditions. This study proposes a novel MPTS model, integrating grid search (GS), nonlinear particle swarm optimization (NPSO), and support vector regression (SVR) algorithms to predict interlayer soil settlement during under-crossing construction. It utilizes GS and NPSO to obtain the optimal hyperparameters for SVR. Sensitivity analysis based on MPTS model was used to identify important parameters and propose specific improvement measures. A real under-crossing tunnel project was adopted to verify the effectiveness of the MPTS. The results show that the new input parameters proposed in this paper reduce mean absolute error (MAE) by 20.3% and mean square error (MSE) by 46.7% of prediction results. Compared with the other three algorithms, GS-NPSO-SVR has better prediction performance. Through Sobol sensitivity analysis, previous settlement, ESR and MFC in fully weathered mudstone and moderately weathered mudstone are identified as the primary parameters affecting the interlayer soil settlement. The improvement measures based on analysis results reduce the accumulated settlement by 79.97%. The developed MPTS model can accurately predict the interlayer soil settlement and provide guidance for water stopping or reinforcement construction.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"24 ","pages":"Pages 335-351"},"PeriodicalIF":8.3,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144904475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial intelligence-optimized shield parameters for soft ground tunneling in urban environment: A case study of Bangkok MRT Blue Line 城市软土地基隧道人工智能优化盾构参数——以曼谷捷运蓝线为例
IF 8.3 1区 工程技术
Underground Space Pub Date : 2025-08-05 DOI: 10.1016/j.undsp.2025.04.008
Sahatsawat Wainiphithapong , Chana Phutthananon , Sompote Youwai , Pitthaya Jamsawang , Phattarawan Malaisree , Ochok Duangsano , Pornkasem Jongpradist
{"title":"Artificial intelligence-optimized shield parameters for soft ground tunneling in urban environment: A case study of Bangkok MRT Blue Line","authors":"Sahatsawat Wainiphithapong ,&nbsp;Chana Phutthananon ,&nbsp;Sompote Youwai ,&nbsp;Pitthaya Jamsawang ,&nbsp;Phattarawan Malaisree ,&nbsp;Ochok Duangsano ,&nbsp;Pornkasem Jongpradist","doi":"10.1016/j.undsp.2025.04.008","DOIUrl":"10.1016/j.undsp.2025.04.008","url":null,"abstract":"<div><div>This paper presents a study on multi-objective optimization (MOO) of shield operational parameters (SOPs) for soft ground tunneling using a tunnel boring machine (TBM) in an urban environment, focusing on the case study of the MRT Blue Line in Bangkok. The investigation aims to determine the optimal combination of SOPs, consisting of face pressure (<span><math><msub><mi>F</mi><mtext>p</mtext></msub></math></span>), thrust force (<span><math><msub><mi>T</mi><mtext>f</mtext></msub></math></span>), grout pressure (<span><math><msub><mi>G</mi><mtext>p</mtext></msub></math></span>), and percent grout filling (<span><math><msub><mi>G</mi><mtext>f</mtext></msub></math></span>), along with relevant environmental factors, including tunnel depth (<span><math><msub><mi>T</mi><mtext>d</mtext></msub></math></span>), inverted groundwater level (<span><math><msub><mi>W</mi><mtext>i</mtext></msub></math></span>), and type of surrounding soil (<span><math><msub><mi>T</mi><mtext>s</mtext></msub></math></span>). The primary objective is to enhance the penetration rate (<span><math><msub><mi>P</mi><mtext>avg</mtext></msub></math></span>, in terms of average value), as cost consideration, while mitigating ground surface settlement (<span><math><mi>S</mi></math></span>), as safety (serviceability) consideration. Using long short-term memory (LSTM) neural networks as predictive models, the results yield coefficient of determination (<em>R</em><sup>2</sup>) values of 0.81 and 0.96, root mean square error (RMSE) values of 5.91 mm/min and 3.09 mm, and average bias factor values of 0.99 and 0.88 for the <span><math><mi>P</mi></math></span> and <span><math><mi>S</mi></math></span> predictive models, respectively, based on validation datasets. This integrated framework, which combines the non-dominated sorting genetic algorithm (NSGA-II) with LSTM neural networks, is applied to MOO to identify the optimal SOPs, while accounting for their influence on <span><math><mi>S</mi></math></span> variation as a time-series over 11 timesteps, as considered in this study. For simplification and practical field implementation, the same set of SOP values is applied across all 11 timesteps during the optimization process. Using the proposed optimization framework, the optimal results demonstrate improvements in <span><math><msub><mi>P</mi><mtext>avg</mtext></msub></math></span>, increasing by up to 109.8% (from 13.99 to 29.35 mm) and in <span><math><mi>S</mi></math></span>, reducing up to 79.6% (from 34.55 to 7.06 mm) when MOO is conducted as a time series using the simplified method. This finding provides a valuable approach to effectively address the sequential uncertainties of relevant factors in soft ground tunneling for similar projects.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"24 ","pages":"Pages 311-334"},"PeriodicalIF":8.3,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144878881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of a large and shallow twin-tunnel excavation on a high-speed railway bridge and related protective measures: A case study 大型浅埋双隧道开挖对高速铁路桥梁的影响及防护措施——以某高速铁路桥梁为例
IF 8.3 1区 工程技术
Underground Space Pub Date : 2025-07-24 DOI: 10.1016/j.undsp.2025.05.001
Wenhui Yang , Dingwen Zhang , Daniela Boldini
{"title":"Impact of a large and shallow twin-tunnel excavation on a high-speed railway bridge and related protective measures: A case study","authors":"Wenhui Yang ,&nbsp;Dingwen Zhang ,&nbsp;Daniela Boldini","doi":"10.1016/j.undsp.2025.05.001","DOIUrl":"10.1016/j.undsp.2025.05.001","url":null,"abstract":"<div><div>This case study examines a landmark engineering project in Suzhou, China, involving the construction of two large-diameter (13.2 m) shield tunnels beneath an active high-speed railway (HSR) bridge. This pioneering project is the first of its kind in both China and the world. Advanced numerical simulations were conducted to rigorously assess construction risks. To ensure the operational safety of the existing HSR bridge, an innovative protective system, consisting primarily of segmental steel casing concrete pile barriers, was employed. A comprehensive network of monitoring sensors was strategically deployed to track soil, pile barrier, and pier displacements throughout both the protective and tunnelling phases. Simulation results indicated that tunnelling without protective measures could cause pier displacements of up to 3.1 mm along the bridge—exceeding the maximum allowable displacement of 2 mm in accordance with regulations. Monitoring data revealed that the maximum pier displacement during protective scheme installation was limited to 0.5 mm. With these protective measures, pier displacement during each tunnelling phase remained consistently below 0.5 mm, representing an approximate 80% reduction compared to the unprotected scenario, thereby ensuring the continued safety of the HSR bridge.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"24 ","pages":"Pages 216-237"},"PeriodicalIF":8.3,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144810521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automated design framework for excavation retaining structures: Extending IFC standards and integrating BIM with geotechnical simulation 开挖挡土结构的自动化设计框架:扩展IFC标准并将BIM与岩土模拟集成
IF 8.3 1区 工程技术
Underground Space Pub Date : 2025-07-24 DOI: 10.1016/j.undsp.2025.04.007
Qiwei Wan, Yuyuan Zhu, Haibin Ding, Wentao Hu, Changjie Xu
{"title":"Automated design framework for excavation retaining structures: Extending IFC standards and integrating BIM with geotechnical simulation","authors":"Qiwei Wan,&nbsp;Yuyuan Zhu,&nbsp;Haibin Ding,&nbsp;Wentao Hu,&nbsp;Changjie Xu","doi":"10.1016/j.undsp.2025.04.007","DOIUrl":"10.1016/j.undsp.2025.04.007","url":null,"abstract":"<div><div>Challenges arise in automate design with building information modeling (BIM) in underground space. Industry foundation classes (IFC) standard lacks detailed entity objects for describing excavation retaining structures and geological information, and automated design based on BIM models is not yet for practical application. This study presents a novel automated framework. It integrates the extended IFC standard with mechanical analysis and BIM modeling, significantly advancing structural optimization and rebar detailing. Direct 3D model generation streamlines complex excavation projects, aligning with the trend towards automated, precision-driven design. Key contributions include: (1) the extension of the IFC standard to support excavation retaining structures with objects like IfcBracedPit and IfcPitWall, improving interoperability between geotechnical models and BIM systems; (2) the integration of heuristic algorithms for automated optimization of deformation control parameters, reducing manual intervention; and (3) the promotion of design methodology that bypasses two-dimensional modeling and directly generates three-dimensional models, enhancing efficiency and allowing engineers to focus on high-level decision-making. However, the framework is primarily suited for standard cross-section projects like subway stations and tunnels. Future work will focus on refining the framework for more complex geotechnical projects, addressing software independence and improving design robustness and independence.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"24 ","pages":"Pages 261-282"},"PeriodicalIF":8.3,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144864262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental study on ECC-based unreinforced shield tunnel segmental joints for future resilient infrastructure 面向未来弹性基础设施的无加固盾构隧道管片节理试验研究
IF 8.3 1区 工程技术
Underground Space Pub Date : 2025-07-23 DOI: 10.1016/j.undsp.2024.09.009
Minjin Cai , Timon Rabczuk , Xiaoying Zhuang
{"title":"Experimental study on ECC-based unreinforced shield tunnel segmental joints for future resilient infrastructure","authors":"Minjin Cai ,&nbsp;Timon Rabczuk ,&nbsp;Xiaoying Zhuang","doi":"10.1016/j.undsp.2024.09.009","DOIUrl":"10.1016/j.undsp.2024.09.009","url":null,"abstract":"<div><div>To advance resilient infrastructure, this study explores unreinforced shield tunnel segment technologies, a critical but under-researched area. It conducted experiments on ECC-based unreinforced segments (ECCUS), comparing them with ECC-based reinforced segments (ECCRS) and reinforced concrete segments (RCS), focusing on their mechanical properties, including material characteristics, segmental deflection, joint behavior, bolt strain, damage propagation, failure modes, joint toughness, and ductility. Key findings include: (1) ECCUS joints exhibited significantly enhanced bearing capacity, with ultimate strength 34% higher than RCS and 29% higher than ECCRS. In terms of initial cracking strength, ECCUS outperformed RCS by 200% and ECCRS by 34%. (2) The absence of reinforcement cages in ECCUS reduced stiffness but improved overall segment coordination and deformation, leading to deflections 100% greater than RCS and 85% than ECCRS. (3) ECCUS and ECCRS displayed numerous, fine cracks under 200 µm wide, while RCS showed fewer, wider cracks over 3 mm, leading to significant spalling. Cracks in ECCUS were densely distributed across shear and compression zones, in contrast to RCS and ECCRS where they concentrated on compression areas. (4) ECCUS joints exhibited remarkable toughness, with elastic phase toughness 13.47 times that of RCS and 1.91 times that of ECCRS. In the normal serviceability phase, the toughness of ECCUS was 12.17 times that of RCS and 2.53 times that of ECCRS. (5) Considering multi-scale mechanical effects, ECCUS joints amplified the material advantages of ECC over RC more than 11 times during the elastic stage. These findings offer valuable insights for future resilient infrastructure development based on unreinforced construction technologies.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"24 ","pages":"Pages 283-310"},"PeriodicalIF":8.3,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144878880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Benchmark study of three statistical methods for six intact rock failure criteria constrained by different rock strength data 不同岩石强度数据约束下六种完整岩石破坏准则三种统计方法的基准研究
IF 8.3 1区 工程技术
Underground Space Pub Date : 2025-07-23 DOI: 10.1016/j.undsp.2025.04.006
Peng-fei He , Xin Li , Xu-long Yao , Zhi-gang Tao , Yan-ting Du
{"title":"Benchmark study of three statistical methods for six intact rock failure criteria constrained by different rock strength data","authors":"Peng-fei He ,&nbsp;Xin Li ,&nbsp;Xu-long Yao ,&nbsp;Zhi-gang Tao ,&nbsp;Yan-ting Du","doi":"10.1016/j.undsp.2025.04.006","DOIUrl":"10.1016/j.undsp.2025.04.006","url":null,"abstract":"<div><div>To reduce the impact of potential strength outliers on parameter estimation, statistical methods based on the least median square and least absolute deviation have been proposed as alternatives to the traditional least square method. However, little research has been conducted to compare the performance of these different statistical methods. This study introduces a novel procedure for evaluating the three statistical approaches across six selected rock failure criteria, constrained by various rock strength datasets. The consistency of the best-fitting failure criterion and the robustness of the strength parameter estimations serve as the primary benchmarks for evaluation. Based on the benchmark analysis, the following conclusions are drawn. First, both the least square and least absolute deviation methods perform equivalently in identifying the best-fitting failure criterion for a given rock strength dataset, whereas the least median square method does not. Second, when estimating the strength parameters in a two-dimensional failure criterion with the conventional test data of low complexity, the least absolute deviation method is recommended for obtaining robust parameter estimations. Third, as the complexity of conventional test data increases or when true triaxial test data are used to estimate strength parameters for a three-dimensional failure criterion, it is essential to evaluate the outlier-proneness by analyzing the prediction error. If the kurtosis of the prediction error is less than 3, the least square method is preferred. Otherwise, the least absolute deviation method should be used to mitigate the influence of potential strength outliers. This benchmark study offers valuable insights for the future application of different statistical methods in rock mechanics.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"24 ","pages":"Pages 238-260"},"PeriodicalIF":8.3,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144810524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A lifecycle carbon emission evaluation model for urban underground highway tunnel facilities 城市地下公路隧道设施全生命周期碳排放评价模型
IF 8.3 1区 工程技术
Underground Space Pub Date : 2025-07-18 DOI: 10.1016/j.undsp.2025.04.005
Guosheng Wang , Dechun Lu , Gangao Ji , Xuhua Liang , Qingtao Lin , Jirui Lv , Xiuli Du
{"title":"A lifecycle carbon emission evaluation model for urban underground highway tunnel facilities","authors":"Guosheng Wang ,&nbsp;Dechun Lu ,&nbsp;Gangao Ji ,&nbsp;Xuhua Liang ,&nbsp;Qingtao Lin ,&nbsp;Jirui Lv ,&nbsp;Xiuli Du","doi":"10.1016/j.undsp.2025.04.005","DOIUrl":"10.1016/j.undsp.2025.04.005","url":null,"abstract":"<div><div>Anthropogenic greenhouse gas emissions stand as the primary catalyst of climate perturbations. A precise evaluation of these emissions holds paramount importance in realizing energy conservation and emission reduction goals. Urban underground highway tunnel facilities emerge as a promising recourse for ameliorating traffic congestion and advancing energy conservation and emission mitigation endeavours. Nonetheless, the methodologies for quantifying its carbon emissions remain scant. This study ventures into the realm of carbon footprint appraisal within the lifecycle paradigm of underground highway tunnel facilities. Tailored to the characteristics, functionalities, and design intricacies of urban underground highway tunnel facilities, the physical boundaries and scopes are meticulously calibrated. Subsequently, a carbon emission computational model adept at encapsulating the emission characteristics throughout the entire lifecycle is formulated. Meanwhile, a detailed database is established for emission factors of various carbon emission activities. Leveraging insights garnered from a specific project case, the overarching carbon emission profiles of the urban underground highway tunnel facility, both in aggregate and individual stages, are elucidated. Concomitantly, bespoke recommendations and strategies aimed at energy preservation and emission abatement are proffered, attuned to the idiosyncratic attributes of carbon emissions across distinct stages.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"24 ","pages":"Pages 352-370"},"PeriodicalIF":8.3,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144912429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信