Underground Space最新文献

筛选
英文 中文
Optimization of reinforced ring base depth for vertical shaft sinking in soft soil using VSM method
IF 8.2 1区 工程技术
Underground Space Pub Date : 2025-03-19 DOI: 10.1016/j.undsp.2024.12.005
Dhyaa A.H. Abualghethe , Baogang Mu , Guoliang Dai , Sijin Liu , Zhongwei Li , Songyu Liu , Lei Han
{"title":"Optimization of reinforced ring base depth for vertical shaft sinking in soft soil using VSM method","authors":"Dhyaa A.H. Abualghethe ,&nbsp;Baogang Mu ,&nbsp;Guoliang Dai ,&nbsp;Sijin Liu ,&nbsp;Zhongwei Li ,&nbsp;Songyu Liu ,&nbsp;Lei Han","doi":"10.1016/j.undsp.2024.12.005","DOIUrl":"10.1016/j.undsp.2024.12.005","url":null,"abstract":"<div><div>Constructing vertical shafts in densely populated urban areas with complex geological conditions poses significant challenges, necessitating innovative construction techniques and design optimization. This study investigates the deformation behavior of a 42.5 m deep shaft excavated using the vertical shaft sinking machine (VSM) method in Shanghai’s soft soil conditions comprising deep cohesive soil layers. Comprehensive numerical analysis simulated the VSM construction process, analysing deformations within the shaft structure, surrounding soil, and adjacent buildings while evaluating the influence of varying reinforced ring base depths. Results reveal a significant 30% reduction in the maximum lateral shaft deformation, from 28 to 20 mm, by increasing the reinforced ring base depth to an optimal 16 m, enhancing lateral stability. Vertical deformations exhibited complex settlement and uplift mechanisms in segmental rings and piles, influenced by factors like excavation stages, pile installation, water pressures, and adjacent loads. The optimal 16 m depth effectively mitigated uplift, and optimized load distribution, limiting the maximum settlement to 12 mm while minimizing dewatering-induced uplift effects. Analysis indicated reduced lateral movements and settlements in surrounding buildings with increasing distance from excavation, highlighting VSM’s potential for minimizing impacts on neighboring structures. This study emphasizes VSM’s suitability for shaft projects in geologically complex areas, providing insights for design, mitigating environmental impacts, and enhancing deep excavation safety and efficiency in soft soils. The findings contribute to optimizing vertical shaft construction, ensuring successful underground infrastructure execution in challenging conditions. Identifying the optimal reinforced ring base depth promotes sustainable urban development by minimizing disturbances. This research advances innovative methods and strategies for complex underground projects.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"22 ","pages":"Pages 280-302"},"PeriodicalIF":8.2,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143748524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cutting-edge approaches to specific energy prediction in TBM disc cutters: Integrating COSSA-RF model with three interpretative techniques
IF 8.2 1区 工程技术
Underground Space Pub Date : 2025-03-10 DOI: 10.1016/j.undsp.2024.11.004
Jian Zhou , Zijian Liu , Chuanqi Li , Kun Du , Haiqing Yang
{"title":"Cutting-edge approaches to specific energy prediction in TBM disc cutters: Integrating COSSA-RF model with three interpretative techniques","authors":"Jian Zhou ,&nbsp;Zijian Liu ,&nbsp;Chuanqi Li ,&nbsp;Kun Du ,&nbsp;Haiqing Yang","doi":"10.1016/j.undsp.2024.11.004","DOIUrl":"10.1016/j.undsp.2024.11.004","url":null,"abstract":"<div><div>Specific energy (SE) is an important index to measure crushing efficiency in mechanized tunnel excavation. Accurate prediction of the SE of tunnel boring machine disc cutters is important for optimizing the crushing process, reducing energy consumption, and minimizing machine wear. Therefore, in this paper, the sparrow search algorithm (SSA), combined with six chaotic mapping strategies, is utilized to optimize the random forest (RF) model for predicting SE, referred to as the COSSA-RF prediction models. For this purpose, an SE prediction database was established for training and validating model performance, encompassing 160 sets of experimental data, each with six input parameters: uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), disc cutter diameter (<em>D</em>), cutter tip width (<em>T</em>), cutter spacing (<em>S</em>), and cutter penetration depth (<em>P</em>), along with a target parameter, SE. The evaluation results indicate that the COSSA-RF models demonstrate superior performance compared to other four machine learning models. In particular, the Chebyshev map-SSA-RF (CHSSA-RF) model achieves the most satisfactory prediction accuracy among all models, resulting in the highest coefficient of determination <em>R</em><sup>2</sup> and dynamic variance-weighted global performance indicator values (0.9756 and 0.0814) and the lowest values of root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) (6.4742, 4.0003, and 20.41%). Lastly, the results of interpretability analysis of the best model through SHapley Additive exPlanations, local interpretable model-agnostic explanations, and Vivid methods show that the importance of input parameters ranked as follows: UCS, BTS, <em>P</em>, <em>S</em>, <em>T</em>, and <em>D</em>. Moreover, interactions between parameters (UCS and BTS, BTS and <em>P</em>, and BTS and <em>S</em>) significantly influence the model predictions.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"22 ","pages":"Pages 241-262"},"PeriodicalIF":8.2,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143685729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Field monitoring and instrumentation in microtunnelling/pipe jacking: A review and future directions
IF 8.2 1区 工程技术
Underground Space Pub Date : 2025-02-25 DOI: 10.1016/j.undsp.2024.12.003
Asad Wadood , Bryan A. McCabe , Brian B. Sheil
{"title":"Field monitoring and instrumentation in microtunnelling/pipe jacking: A review and future directions","authors":"Asad Wadood ,&nbsp;Bryan A. McCabe ,&nbsp;Brian B. Sheil","doi":"10.1016/j.undsp.2024.12.003","DOIUrl":"10.1016/j.undsp.2024.12.003","url":null,"abstract":"<div><div>The popularity of trenchless techniques as a means of utility pipeline installation in urban environments, specifically microtunnelling/pipe-jacking, has increased in recent years due to its minimally-disruptive nature and reduced carbon footprint in comparison to conventional open-cut excavation methods. The response of pipes during the jacking process is complex and is governed by several factors, including ground conditions, the amount and distribution of lubrication, pipe and annulus size, pipeline misalignments and jacking force eccentricity, among others. Design practice remains based on empirical equations and previous drives through similar geology, resulting in uncertainty in jacking force estimates, thereby restricting adoption of the technique. In order to improve our understanding of the pipe-jacking process, pipes incorporating sensors providing real-time measurements of earth pressures, pore water pressures, axial strains and hoop strains can be used; but the number of such studies reported in the literature is small and the potential of instrumentation on routine projects is largely untapped. Moreover, jacking pipe monitoring practice lags behind the state-of-the-art instrumentation techniques used for monitoring other geotechnical infrastructure. The purpose of this paper is to provide a thorough review of learnings from instrumented pipe-jacking case studies and other supporting research, as well as to propose potential solutions to research gaps in the current state of design practice and field monitoring of pipe jacking projects.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"22 ","pages":"Pages 225-240"},"PeriodicalIF":8.2,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143643908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Test and field application of fracture evolution of large-span tunnel under NPR bolt compensation support system NPR 螺栓补偿支撑系统下大跨度隧道断裂演化试验与现场应用
IF 8.2 1区 工程技术
Underground Space Pub Date : 2025-02-15 DOI: 10.1016/j.undsp.2024.12.002
Jun Yang , Kexue Wang , Wenhui Bian , Yanbo Zhang , Xiaohui He , Yi Fang , Zhicheng Sun
{"title":"Test and field application of fracture evolution of large-span tunnel under NPR bolt compensation support system","authors":"Jun Yang ,&nbsp;Kexue Wang ,&nbsp;Wenhui Bian ,&nbsp;Yanbo Zhang ,&nbsp;Xiaohui He ,&nbsp;Yi Fang ,&nbsp;Zhicheng Sun","doi":"10.1016/j.undsp.2024.12.002","DOIUrl":"10.1016/j.undsp.2024.12.002","url":null,"abstract":"<div><div>Shallow-buried large-span tunnels may bend or collapse owing to loads, and their surface structures present considerable safety issues. At Huashanyilu station on Qingdao Metro Line 6 in China, theoretical studies and interior model tests were conducted to effectively increase the bearing capacity of the tunnel. The anchoring bearing mechanism of the high prestress compensating support system was revealed, and the system was built using a negative Poisson’s ratio (NPR) bolt at its core. We compared and analyzed the fracture evolution characteristics of the compensating and conventional support systems under various loads. The results showed that the compensating support system effectively increased the support strength and residual safety factor of the bearing arch, whereas the use of a high-prestress NPR anchor reduced the early deformation of the surrounding rock. The coupling failure modes of the arch tension extrusion failure and arch foot shear fracture occurred when the tunnel surrounding the rock was overloaded. The compensatory support system produces a bearing arch that is extremely resistant to external loads with minimal deformation of the tunnel surface and arch frame, excellent surrounding rock integrity, and a low stress rate. The radial and tangential peak stresses exceeded those of the passive support system, and the structural block fell when it became unstable. The maximum displacement of the arch stays constant at −5.7 mm after tunnel excavation. NPR bolts have remarkable applications in this field. The conclusions of this study have a significant impact on the regulation of the stability of the surrounding rock in large-span tunnels.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"22 ","pages":"Pages 186-207"},"PeriodicalIF":8.2,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143620459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overall smoke control performance using naturally ventilated shafts in tunnel fires with multiple fire sources
IF 8.2 1区 工程技术
Underground Space Pub Date : 2025-02-13 DOI: 10.1016/j.undsp.2024.10.005
Kun He , Ying Zhen Li , Haukur Ingason , Xudong Cheng
{"title":"Overall smoke control performance using naturally ventilated shafts in tunnel fires with multiple fire sources","authors":"Kun He ,&nbsp;Ying Zhen Li ,&nbsp;Haukur Ingason ,&nbsp;Xudong Cheng","doi":"10.1016/j.undsp.2024.10.005","DOIUrl":"10.1016/j.undsp.2024.10.005","url":null,"abstract":"<div><div>This study investigates the overall smoke control performance using shafts in a naturally ventilated tunnel in the case of multiple fire sources. Detailed comparisons were also made with the corresponding single fire source scenarios. The results show that the interaction between multiple fire sources affects smoke control performance, resulting in a lower smoke layer height compared to the corresponding single fire scenario. For the multiple fire sources scenarios, the smoke layer height in the fire section first decreases and then keeps stable, as the fire center spacing increases. The smoke layer height in the fire section is 20%–25% lower than that in a single fire source scenario for a given total heat release rate. The minimum smoke layer height at the adjacent non-fire tunnel section is much lower than that in the fire section due to the disturbance of the first group of shafts. For a small tunnel fire such as a car fire, the critical safety distances for firefighters and evacuees increase as the fire source spacing decreases. For a large tunnel fire such as a bus fire, the effect of fire source spacing on the critical safety distance is limited, while the shaft interval plays an important role. The fire source spacing and the number of fire sources have limited influences on the smoke spread length due to the small differences in the induced air flow velocity and overall smoke exhaust rate through shafts. When the fire sources are located under one shaft, the number of shafts required for complete smoke exhaust is the least and the total smoke spread length is the shortest. For a given fire location, the smoke spread length increases significantly with an increasing shaft interval. This study contributes to the design of natural ventilation shafts in tunnels possibly with multiple fire sources.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"22 ","pages":"Pages 168-185"},"PeriodicalIF":8.2,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143620458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of greenhouse gas emissions in subway tunnel construction
IF 8.2 1区 工程技术
Underground Space Pub Date : 2025-02-11 DOI: 10.1016/j.undsp.2024.12.001
Yalin Guo , Chen Dong , Zheng Chen , Shulei Zhao , Wenhao Sun , Wei He , Lei Zhang , Yiyuan Wang , Nan Hu , Chun Guo
{"title":"Evaluation of greenhouse gas emissions in subway tunnel construction","authors":"Yalin Guo ,&nbsp;Chen Dong ,&nbsp;Zheng Chen ,&nbsp;Shulei Zhao ,&nbsp;Wenhao Sun ,&nbsp;Wei He ,&nbsp;Lei Zhang ,&nbsp;Yiyuan Wang ,&nbsp;Nan Hu ,&nbsp;Chun Guo","doi":"10.1016/j.undsp.2024.12.001","DOIUrl":"10.1016/j.undsp.2024.12.001","url":null,"abstract":"<div><div>This study evaluates the greenhouse gas (GHG) emissions associated with the construction of subway tunnels, aiming to identify the primary sources of emissions and provide insights into emission reduction strategies. Using the civil engineering construction of specific tunnels of a subway line in Guangdong Province, China, as a case study, this research quantitatively analyzes the composition of GHG emissions across three stages: upstream building materials production, building materials transportation, and on-site construction. The results indicate that upstream building materials production and on-site construction collectively account for over 95% of the total GHG emissions during tunnel construction. The analysis further reveals that a small proportion of building materials and construction machinery accounts for the majority of total GHG emissions during tunnel construction, aligning with the Pareto principle. The findings emphasize the importance of accurate evaluation of high-impact building materials and construction machinery, particularly in contexts where basic energy consumption data are limited. Strategies such as utilizing recycled materials and enhancing machinery efficiency can lead to significant emission reductions. For instance, achieving a recycling rate of 10% to 30% for steel and concrete can reduce total GHG emissions from tunnel construction by 5.51% to 9.94%, while improving machinery efficiency by 10% to 30% can reduce emissions by up to 2.29%. These findings provide a scientific basis for low-carbon subway tunnel construction.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"22 ","pages":"Pages 263-279"},"PeriodicalIF":8.2,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143686442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental study on the modulus of soil reaction for plastic pipes buried in lightweight cellular concrete backfill
IF 8.2 1区 工程技术
Underground Space Pub Date : 2025-01-23 DOI: 10.1016/j.undsp.2024.11.003
Yu-qiu Ye , Jie Han , Brad Dolton , Md Wasif Zaman , Robert L. Parsons
{"title":"Experimental study on the modulus of soil reaction for plastic pipes buried in lightweight cellular concrete backfill","authors":"Yu-qiu Ye ,&nbsp;Jie Han ,&nbsp;Brad Dolton ,&nbsp;Md Wasif Zaman ,&nbsp;Robert L. Parsons","doi":"10.1016/j.undsp.2024.11.003","DOIUrl":"10.1016/j.undsp.2024.11.003","url":null,"abstract":"<div><div>The modulus of soil reaction, representing the stiffness of a soil surrounding pipes, is a critical parameter in the design of buried flexible pipes. This study conducted plate loading tests on corrugated polyvinyl chloride, smooth polyvinyl chloride, and high-density polyethylene pipes buried in lightweight cellular concrete (LCC) backfills at densities of 400, 475, 550, and 650 kg/m<sup>3</sup> to investigate the pipe deformation behavior and moduli of soil reaction. In addition, this study examined the effects of the narrow trench condition on the pipe deformation and modulus of soil reaction. In these tests, the vertical and horizontal diameter changes of pipes under the vertical pressures applied through a hydraulic jack were measured. Test results reveal that the average moduli of soil reaction of plastic pipes within a wide trench backfilled by the LCCs at densities of 400, 475, 550, and 650 kg/m<sup>3</sup> were back-calculated as 66, 99, 133, and 205 MPa, respectively, using the modified Iowa formula. Furthermore, the back-calculated moduli of soil reaction for LCCs exhibited linear relationships with their densities and unconfined compressive strengths and were higher than the recommended values for the commonly used soil backfills. Based on the vertical deformation criterion of 5% pipe diameter, the ultimate bearing capacities of flexible pipes buried in wide LCCs at densities of 475, 550, and 650 kg/m<sup>3</sup> exceeded 500 kPa. The LCC with a narrow trench exhibited a lower modulus of soil reaction and ultimate bearing capacity but a larger pipe diameter change.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"22 ","pages":"Pages 153-167"},"PeriodicalIF":8.2,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143610619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental investigation and limit analysis of shield tunnel face failure mechanism in sand
IF 8.2 1区 工程技术
Underground Space Pub Date : 2025-01-17 DOI: 10.1016/j.undsp.2024.11.002
Mengzhe Huo , Weizhong Chen , Jingqiang Yuan , Guojun Wu , Yunfa Li , Yubiao Liu
{"title":"Experimental investigation and limit analysis of shield tunnel face failure mechanism in sand","authors":"Mengzhe Huo ,&nbsp;Weizhong Chen ,&nbsp;Jingqiang Yuan ,&nbsp;Guojun Wu ,&nbsp;Yunfa Li ,&nbsp;Yubiao Liu","doi":"10.1016/j.undsp.2024.11.002","DOIUrl":"10.1016/j.undsp.2024.11.002","url":null,"abstract":"<div><div>Shield tunneling in urban underground space necessitates tight control over support pressure at the tunnel face and a thorough insight into ground collapse mechanisms. This study conducts a model test and a theoretical validation to clarify the mechanisms of face failure and subsequent ground collapse in sand during earth pressure balanced shield (EPBS) tunneling operations. The experiment investigates the changes in soil pressure and surface subsidence patterns during shield tunneling and collapse stages, to elucidate the entire process of ground collapse triggered by shield tunneling disturbances. A novel methodology was proposed to ensure effective verification of the rotational failure mechanism, focusing on the collapse pit morphology and the critical collapse pressure. The results indicate that: (1) precise control over the shield tunneling and screw conveyor rotation speeds is essential for tunnel face stability; (2) the sand with low moisture content is prone to stepwise ground collapse under shield tunneling disturbances; (3) soil pressure measurements at the cutterhead are more indicative of face failure and imminent ground collapse than those from the soil chamber; (4) there is a consistent alignment between the rotational failure mechanism and observed collapse pit morphology, albeit with slight variations due to tunneling disturbances; (5) the experimentally determined critical collapse pressure is higher than the theoretical prediction, indicating an underestimation of risks in the current model. The study advances the understanding of the face failure mechanisms in shield tunnels, thereby providing insights into the design and safety of shield tunneling within engineering practices.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"22 ","pages":"Pages 137-152"},"PeriodicalIF":8.2,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143601070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multidimensional seismic fragility analysis of subway station structures using the adaptive bandwidth kernel density estimation and Copula function
IF 8.2 1区 工程技术
Underground Space Pub Date : 2025-01-09 DOI: 10.1016/j.undsp.2024.10.004
Chunyi Cui , Jingtong Zhao , Minze Xu , Chengshun Xu , Hailong Liu , Kunpeng Wang
{"title":"Multidimensional seismic fragility analysis of subway station structures using the adaptive bandwidth kernel density estimation and Copula function","authors":"Chunyi Cui ,&nbsp;Jingtong Zhao ,&nbsp;Minze Xu ,&nbsp;Chengshun Xu ,&nbsp;Hailong Liu ,&nbsp;Kunpeng Wang","doi":"10.1016/j.undsp.2024.10.004","DOIUrl":"10.1016/j.undsp.2024.10.004","url":null,"abstract":"<div><div>Structural damages during an earthquake are typically controlled by seismic demands, which are represented by the combination of amplitude of ground motion and cyclic load effects. Since traditional methods normally assume the lognormal distributions of seismic demands and resistance parameters, uncertainties are inevitably induced in the seismic fragility analysis. In this paper, the Copula function and adaptive bandwidth kernel density estimation method (ABKDE) are used to establish a novel multidimensional seismic fragility analysis framework. Based on the results of incremental dynamic analysis for subway station structures, ABKDE is adopted to establish single-parameter seismic fragility curves for both the maximum inter-story drift ratio (MIDR) and cumulated dissipated hysteretic energy (CDHE), respectively. Subsequently, the Copula function is used to formulate a bivariate seismic fragility function considering the correlations among seismic demand measures and establish the corresponding fragility curves. Finally, comparative analyses are conducted to evaluate seismic fragility curves using Copula-based dual and single-parameter damage models as well as the traditional damage models. It is found that the seismic fragility analysis method using the Copula function has the ability to gain a comprehensive consideration of the MIDR and CDHE during the damage process of subway station structures. Moreover, this newly developed seismic fragility analysis framework can capture the influence of the correlation between deformation and energy under various peak ground accelerations on structural damage. Thus, this framework can provide a scientific basis for predicting structural damage in subway stations subjected to varying intensities of ground motion while considering multiple damage indicators.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"22 ","pages":"Pages 110-123"},"PeriodicalIF":8.2,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143579937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D location estimation and tunnel mapping of autonomous driving robots through 3D point cloud registration on underground mine rampways
IF 8.2 1区 工程技术
Underground Space Pub Date : 2025-01-07 DOI: 10.1016/j.undsp.2024.10.003
Heonmoo Kim, Yosoon Choi
{"title":"3D location estimation and tunnel mapping of autonomous driving robots through 3D point cloud registration on underground mine rampways","authors":"Heonmoo Kim,&nbsp;Yosoon Choi","doi":"10.1016/j.undsp.2024.10.003","DOIUrl":"10.1016/j.undsp.2024.10.003","url":null,"abstract":"<div><div>In this study, we developed a three-dimensional (3D) location estimation and tunnel mapping system to locate an autonomous robot in the rampway of an underground mine using 3D point cloud registration. A 3D point cloud of the mine tunnel was measured using a 3D light detection and ranging (LiDAR) sensor and registered using the iterative closest point (ICP) algorithm to estimate the 3D pose of the robot. This was combined with two-dimensional LiDAR, inertial measurement unit, and encoder sensors to estimate the 3D trajectory of the robot. Additionally, the 3D tunnel mapping was performed using the 3D trajectory of the robot and the 3D point cloud data of the tunnel. A comparison of the tunnel maps created using conventional surveying equipment and the robot indicated a mapping error of 0.2275 m and localization error of 0.2465 m confirming the excellent overall tunnel mapping and localization performance. The tunnel mapping areas were further compared by selecting areas with relatively high and low ICP matching accuracies; the calculated errors were 0.6186 and 0.2257 m in the areas with low and high accuracies, respectively. Furthermore, the accuracy of the ICP matching tended to be low in areas where the change in the pitch angle of the robot was large.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"22 ","pages":"Pages 1-20"},"PeriodicalIF":8.2,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143454239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信