Underground SpacePub Date : 2024-09-07DOI: 10.1016/j.undsp.2024.06.004
Haibo Wang , Fuming Wang , Chengchao Guo , Lei Qin , Jun Liu , Tongming Qu
{"title":"Experimental investigation on the failure characteristic and synergistic load-bearing mechanism of multi-layer linings for deep soft rock tunnels","authors":"Haibo Wang , Fuming Wang , Chengchao Guo , Lei Qin , Jun Liu , Tongming Qu","doi":"10.1016/j.undsp.2024.06.004","DOIUrl":"10.1016/j.undsp.2024.06.004","url":null,"abstract":"<div><div>Multi-layer linings have been widely used in deep rheological soft rock tunnels for the excellent performance in preventing large-deformation hazards. Previous studies have focused on the bearing capability of multi-layer lining, however, its failure characteristics and synergistic load-bearing mechanisms under high geo-stress are still unclear. To fill the gap, three-dimensional geomechanical model tests were conducted and synergistic mechanisms were analysed in this study. The model test was divided into normal loading, excavating, and overloading stages. The surrounding rock deformation was monitored by using an improved high-precise extensometer measurement system. Results show that the largest radial deformation appears on the sidewall, followed by the floor and vault during the excavating stage. The relative convergence deformation of sidewalls springing reaches 1.32 mm. The failure characteristics of the multi-layer linings during the overloading stage undergo an evolution of stability, crack initiation, local failure, and collapse, with a safety factor of 1.0–1.6, 1.6–2.0, and 2.0–2.2, respectively. The synergistic load-bearing mechanism analysis results suggest that the early stiffness and late yielding deformation capacity of large deformation support measures play important roles in stability maintenance both in the construction and operation of deep soft rock tunnels. Therefore, the combination of yielding support or a compressible layer with reinforced support is recommended to mitigate the effect of the high geo-stress.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"20 ","pages":"Pages 259-276"},"PeriodicalIF":8.2,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142358047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Underground SpacePub Date : 2024-09-07DOI: 10.1016/j.undsp.2024.05.003
Gang Wei , Feifan Feng , Shiyu Huang , Tianbao Xu , Jiaxuan Zhu , Xiao Wang , Chengwei Zhu
{"title":"Full-scale loading test for shield tunnel segments: Load-bearing performance and failure patterns of lining structures","authors":"Gang Wei , Feifan Feng , Shiyu Huang , Tianbao Xu , Jiaxuan Zhu , Xiao Wang , Chengwei Zhu","doi":"10.1016/j.undsp.2024.05.003","DOIUrl":"10.1016/j.undsp.2024.05.003","url":null,"abstract":"<div><div>To explore the load-bearing performance and the failure patterns of the lining structures, a full-scale loading test on the three-ring staggered assembled shield tunnel segments is carried out through a hydraulic loading system. In the experimental study, the segments’ internal force, convergence deformation, and displacement, and the bolts’ internal force, are analyzed. According to the experimental results, the relationship between internal force and deformation is obtained to determine the residual bearing capacity of the shield tunnel at each stage. Three stages are specified for the evolution of the segment’s maximum bending moment during the loading process, in which, the elastic stage is the main and longest stage, in which the bending moment of the segment increases the most. There are two stages for convergence deformation development and segment misalignment development. At the end of loading, the segment’s maximum positive and negative convergence values reach 61.22 and −57.69 mm, respectively. Besides, the maximum segment misalignment is 3.67 mm, which occurs in the direction of 90°. The segment cracks when its maximum convergence value reaches 25.03 mm. Moreover, there are signs of fracturing on the waist joint of the segment when its maximum convergence value reaches 32.73 mm. The concrete at the waist joint starts fracturing in pieces when the segment’s maximum convergence value reaches 38.93 mm, which is defined as the type of shear failure. Finally, the bearing capacity of shield tunnels during segment failure period can be evaluated by using the corresponding relationship between deformation and internal force.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"20 ","pages":"Pages 197-217"},"PeriodicalIF":8.2,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Underground SpacePub Date : 2024-09-07DOI: 10.1016/j.undsp.2024.06.003
Zheng Yang , Ming Tao , Wenbin Fei , Tubing Yin , P.G. Ranjith
{"title":"Grain-based coupled thermo-mechanical modeling for stressed heterogeneous granite under thermal shock","authors":"Zheng Yang , Ming Tao , Wenbin Fei , Tubing Yin , P.G. Ranjith","doi":"10.1016/j.undsp.2024.06.003","DOIUrl":"10.1016/j.undsp.2024.06.003","url":null,"abstract":"<div><div>Microscopic damage and macroscopic mechanical properties of granite under the coupling effect of thermal load and initial stress are crucial considerations for the safe construction of underground geo-energy engineering. However, visualizing real-time micro-crack processes in rocks under high-temperature and high-pressure conditions using the current experimental techniques remains challenging. In this study, a numerical method is developed to analyze the thermally induced damage in heterogeneous granite under the coupled influence of initial stress and thermal loading. A biaxial thermo-mechanical grain-based model considering real mineral distribution is established based on digital image processing technology, the grain-based modeling method, and heat conduction theory. The microscopic parameters are calibrated and the effectiveness of the model is verified based on thermal shock and uniaxial compression experiments. The thermal destruction mechanism of granite under initial stress from a microscopic perspective was unveiled for the first time. During the thermal shock process, the stress within the rock does not remain constant at the initial stress value. Instead, it changes continuously with the progression of heat conduction. The impact of the initial stress on the thermally induced cracks is relatively minor. Cooling causes more damage to the rock than heating during thermal shock. The intragranular cracks of quartz consistently outnumber other intragranular or intergranular cracks during thermal shock. The initial stress and thermal shock damage enhance and weaken the biaxial peak strength of granite, respectively. The weakening effect of thermal shock on the peak strength becomes more pronounced at a higher initial stress. These research findings and proposed research techniques contribute to the management and optimization of underground geo-energy engineering.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"20 ","pages":"Pages 174-196"},"PeriodicalIF":8.2,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Underground SpacePub Date : 2024-08-29DOI: 10.1016/j.undsp.2024.07.001
Jiaxin Liang , Wei Liu , Xinsheng Yin , Wentao Li , Zhe Yang , Jichen Yang
{"title":"Experimental study on the performance of shield tunnel tail grout in ground","authors":"Jiaxin Liang , Wei Liu , Xinsheng Yin , Wentao Li , Zhe Yang , Jichen Yang","doi":"10.1016/j.undsp.2024.07.001","DOIUrl":"10.1016/j.undsp.2024.07.001","url":null,"abstract":"<div><div>Shield tail grouting is an important measure to control tunnelling-induced ground deformation by injecting prepared grouting materials to fill the tail gap. The working performance of grout is usually invisible and hard to obtain in construction. This paper carries out an experimental study to investigate the tail grout behavior in ground. In the current research, a testing device is developed to explore the grout behavior in varying soils. The grout working performance is evaluated not only by the liquid grout properties such as fluidity, consistency, bleeding rate, stone rate and compressed deformation but also solid grout properties such as unconfined compressive strength and permeability. Three typical grouts are chosen and their behaviors in the various soils are observed. To take an insight on the behaviors, scanning electron microscopy and mercury intrusion porosimetry analysis are employed. The microstructure of solid grout is a sign of its working performance. The observation shows that the solid grout micro-structure is influenced by grout proportions, pressure, and ground permeabilities. The experimental results are applied in the case of Beijing Metro Line 12 for validation and as a result, the ground movement is inhibited due to high performance of tail grout.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"20 ","pages":"Pages 277-292"},"PeriodicalIF":8.2,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Underground SpacePub Date : 2024-08-29DOI: 10.1016/j.undsp.2024.06.002
Junjie Ma , Tianbin Li , Zhen Zhang , Roohollah Shirani Faradonbeh , Mostafa Sharifzadeh , Chunchi Ma
{"title":"Novel multifractal-based classification model for the quality grades of surrounding rock within tunnels","authors":"Junjie Ma , Tianbin Li , Zhen Zhang , Roohollah Shirani Faradonbeh , Mostafa Sharifzadeh , Chunchi Ma","doi":"10.1016/j.undsp.2024.06.002","DOIUrl":"10.1016/j.undsp.2024.06.002","url":null,"abstract":"<div><div>Understanding the variation patterns of tunnel boring machine (TBM) operational parameters is crucial for assessing engineering geological conditions and quality grades of surrounding rock within tunnels. Studying the multifractal characteristics of the TBM operational parameters can help identify the patterns, but the relevant research has not yet been explored. This paper proposed a novel classification model for quality grades of surrounding rock in TBM tunnels based on multifractal analysis theory. Initially, the statistical characteristics of eight TBM cycle data with different grades of surrounding rock were explored. Subsequently, the method of calculating and analyzing the multifractal characteristic parameters of the TBM operational data was deduced and summarized. The research results showed that the TBM operational parameters of cutterhead torque, total thrust, advance rate, and cutterhead rotation speed have significant multifractal characteristics. Its multifractal dimension, midpoint slope of the generalized fractal spectrum, and singularity strength range can be used to evaluate the surrounding rock grades of the tunnel. Finally, a novel classification model for the tunnel surrounding rocks based on the multifractal characteristic parameters was proposed using the multiple linear regression method, and the model was verified through four TBM cycle data containing different surrounding rock grades. The results showed that the proposed multifractal-based classification model for tunnel surrounding rocks has high accuracy and applicability. This study not only achieves multifractal feature representation and surrounding rock classification for TBM operational parameters but also holds the potential for adaptive adjustment of TBM operational parameters and automated tunneling applications.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"20 ","pages":"Pages 140-156"},"PeriodicalIF":8.2,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Underground SpacePub Date : 2024-08-24DOI: 10.1016/j.undsp.2024.05.002
Yingtao Hu , Liangchao Zou , Wenjie Xu , Liangtong Zhan , Peng Xia , Duanyang Zhuang
{"title":"Solute transport in stochastic discrete fracture-matrix systems: Impact of network structure","authors":"Yingtao Hu , Liangchao Zou , Wenjie Xu , Liangtong Zhan , Peng Xia , Duanyang Zhuang","doi":"10.1016/j.undsp.2024.05.002","DOIUrl":"10.1016/j.undsp.2024.05.002","url":null,"abstract":"<div><p>Obtaining a comprehensive understanding of solute transport in fractured rocks is crucial for various geoengineering applications, including waste disposal and construction of geo-energy infrastructure. It was realized that solute transport in fractured rocks is controlled by stochastic discrete fracture-matrix systems. However, the impacts and specific uncertainty caused by fracture network structures on solute transport in discrete fracture-matrix systems have yet not been fully understood. In this article, we aim to investigate the influence of fracture network structure on solute transport in stochastic discrete fracture-matrix systems. The fluid flow and solute transport are simulated using a three-dimensional discrete fracture matrix model with considering various values of fracture density and size (i.e., radius). The obtained results reveal that as the fracture density or minimum fracture radius increases, the corresponding fluid flow and solute transport channels increase, and the solute concentration distribution range expands in the matrix. This phenomenon, attributed to the enhanced connectivity of the fracture network, leads to a rise in the effluent solute concentration mean value from 0.422 to 0.704, or from 0.496 to 0.689. Furthermore, when solute transport reached a steady state, the coefficient of variation of effluent concentration decreases with the increasing fracture density or minimum fracture radius in different scenarios, indicating an improvement in the homogeneity of solute transport results. The presented analysis results of solute transport in stochastic discrete fracture-matrix systems can be helpful for uncertainty management in the geological disposal of high-level radioactive waste.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"20 ","pages":"Pages 69-82"},"PeriodicalIF":8.2,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000837/pdfft?md5=e1fe3b3631546be68a8186376f3b0a76&pid=1-s2.0-S2467967424000837-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Underground SpacePub Date : 2024-08-22DOI: 10.1016/j.undsp.2024.06.001
Da-Long Jin , Hui Jin , Da-Jun Yuan , Pan-Pan Cheng , Dong Pan
{"title":"Physical and mechanical response of large-diameter shield tunnel lining structure under non-uniform fire: A full-scale fire test-based study","authors":"Da-Long Jin , Hui Jin , Da-Jun Yuan , Pan-Pan Cheng , Dong Pan","doi":"10.1016/j.undsp.2024.06.001","DOIUrl":"10.1016/j.undsp.2024.06.001","url":null,"abstract":"<div><p>When a fire occurs in an underground shield tunnel, it can result in substantial property damage and cause permanent harm to the tunnel lining structure. This is especially true for large-diameter shield tunnels that have numerous segments and joints, and are exposed to specific fire conditions in certain areas. This paper constructs a full-scale shield tunnel fire test platform and conducts a non-uniform fire test using the lining system of a three-ring large-diameter shield tunnel with an inner diameter of 10.5 m. Based on the tests, the temperature field distribution, high-temperature bursting, cracking phenomena, and deformation under fire conditions are observed. Furthermore, the post-fire damage forms of tunnel lining structures are obtained through the post-fire ultimate loading test, and the corresponding mechanism is explained. The test results illustrate that the radial and circumferential distribution of internal temperature within the tunnel lining, as well as the radial temperature gradient distribution on the inner surface of the lining, have non-uniform distribution characteristics. As a result, the macroscopic phenomena of lining concrete bursting and crack development during the fire test mainly occur near the fire source, where the temperature rise gradient is the highest. In addition, the lining structure has a deformation characteristic of local outward expansion and cannot recover after the fire load is removed. The ultimate form of damage after the fire is dominated by crush damage from the inside out of the lining joints in the fire-exposed area. The above results serve as a foundation for future tunnel fire safety design and evaluation.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"20 ","pages":"Pages 1-16"},"PeriodicalIF":8.2,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000825/pdfft?md5=8e388e786b80d4a679e702694beefa95&pid=1-s2.0-S2467967424000825-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Underground SpacePub Date : 2024-08-17DOI: 10.1016/j.undsp.2024.04.008
Junfeng Sun , Yong Fang , Hu Luo , Zhigang Yao , Long Xiang , Jianfeng Wang , Yubo Wang , Yifan Jiang
{"title":"Hybrid deep learning approach for rock tunnel deformation prediction based on spatio-temporal patterns","authors":"Junfeng Sun , Yong Fang , Hu Luo , Zhigang Yao , Long Xiang , Jianfeng Wang , Yubo Wang , Yifan Jiang","doi":"10.1016/j.undsp.2024.04.008","DOIUrl":"10.1016/j.undsp.2024.04.008","url":null,"abstract":"<div><p>The ability to predict tunnel deformation holds great significance for ensuring the reliability, safety, and sustainability of tunnel structures. However, existing deformation prediction models often simplify or overlook the impact of spatial characteristics on deformation by treating it as a time series prediction issue. This study utilizes monitoring data from the Grand Canyon Tunnel and introduces an effective data-driven method for predicting tunnel deformation based on the spatio-temporal characteristics of the historical deformation of adjacent sections. The proposed model, a combination of graph attention network (GAT) and bidirectional long and short-term memory network (Bi-LSTM), is equipped with robust spatio-temporal predictive capabilities. Additionally, the study explores other possible spatial connections and the scalability of the model. The results indicate that the proposed model outperforms other deep learning models, achieving favorable root mean square error (<span><math><mrow><mi>RMSE</mi></mrow></math></span>), mean absolute error (<span><math><mrow><mi>MAE</mi></mrow></math></span>), and coefficient of determination (<span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>) values of 0.34 mm, 0.23 mm, and 0.94, respectively. The graph structure based on intuitive spatial connections proves more suitable for meeting the challenges of predicting deformation. Integrating GAT-LSTM with transfer learning technology, remains stable performance when extended to other tunnels with limited data.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"20 ","pages":"Pages 100-118"},"PeriodicalIF":8.2,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000813/pdfft?md5=553352262c269f7f53faaab720bd548a&pid=1-s2.0-S2467967424000813-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Underground SpacePub Date : 2024-08-12DOI: 10.1016/j.undsp.2024.05.001
Dong Zhang , Jianbiao Bai , Rui Wang , Min Deng , Shui Yan , Qiancheng Zhu , Hao Fu
{"title":"Investigation on instability mechanism and control of abandoned roadways in coal pillars recovery face: A case study","authors":"Dong Zhang , Jianbiao Bai , Rui Wang , Min Deng , Shui Yan , Qiancheng Zhu , Hao Fu","doi":"10.1016/j.undsp.2024.05.001","DOIUrl":"10.1016/j.undsp.2024.05.001","url":null,"abstract":"<div><div>The abandoned roadways (ARs) in front of the longwall face catastrophic instability will seriously hamper mining progress, which is a complicated process related to the stress environment, the roadway section, and the mechanical properties of the surrounding rock. The cusp catastrophe theory is employed to establish a state identification model for the irregular coal pillar-roof system (CPRS) formed by the ARs and re-mining entries. To begin, the state discrimination equation (<em>Δp</em>) for the gradual CPRS is derived, and the critical value at which the system transitions into an unstable state under quasi-static conditions is determined. The results indicated that when 16.49 m ≤ <em>L</em> ≤ 22.63 m (<em>L</em> denotes the equivalent span of the intersection roof) and 0 < <em>R</em><sub>e</sub> ≤ 2.61 m (<em>R</em><sub>e</sub> denotes the width of the elastic zone within the triangular coal pillar), the triangular CPRS is inherently unstable. Similarly, for trapezoidal CPRS configurations where the length <em>L</em><sub>m</sub> (the span of the right-angled trapezoid roof in the propulsion direction) varies from 4.0 to 12.60 m, the system is unstable as well. Subsequently, the model was further enhanced by accounting for the impact of the <em>P</em><sub>c</sub> (advance stress increment load), where a critical criterion for the catastrophic instability of the CPRS was proposed, which represented the external energy required to transition the CPRS from an unstable state to catastrophic instability in different mining stages. After that, the stability degree of the irregular coal pillar was categorized, and a coupling zoning control technology was applied to CPR operations. Field monitoring results demonstrated the effectiveness of the zoning control technology, providing valuable guidance for similar mining practices.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"20 ","pages":"Pages 119-139"},"PeriodicalIF":8.2,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000801/pdfft?md5=da5b193741033ceb8356d3acd410aa05&pid=1-s2.0-S2467967424000801-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Underground SpacePub Date : 2024-07-31DOI: 10.1016/j.undsp.2024.04.006
Xingguang Zhao , Dongjue Fan , Zhihong Zhao , Liang Chen , Ju Wang
{"title":"Radial flow behaviors of a rough Beishan granite fracture under normal and thermal loadings","authors":"Xingguang Zhao , Dongjue Fan , Zhihong Zhao , Liang Chen , Ju Wang","doi":"10.1016/j.undsp.2024.04.006","DOIUrl":"10.1016/j.undsp.2024.04.006","url":null,"abstract":"<div><p>During the operation of a deep geological repository in crystalline rocks for disposal of high-level radioactive waste, understanding the seepage behaviors of fractured crystalline rocks under coupled thermo-hydro-mechanical conditions is essential for the performance assessment of deep geological repositories. In this study, radial flow tests on cylindrical Beishan granite specimens with a single artificial fracture were conducted using the MTS 815 rock mechanics testing system to investigate the influence of normal stress and temperature on radial flow behaviors of rough rock fractures. Steady state method was used to measure fracture permeability, and an axial extensometer was used to measure fracture deformation during compression. A three-dimensional blue light scanner was used to characterize fracture surface morphology. Experimental results indicate that fracture permeability decreases nonlinearly with the increase of normal stress or temperature, and normal stress has a more significant influence on fracture permeability than temperature. The evolution of three-dimensional non-uniform distribution of voids under compression was numerically obtained, and the variogram was employed to quantify the non-uniform distribution characteristics of mechanical apertures. In addition, a radial flow model considering non-uniform distribution of apertures is proposed to predict the normal stress- and temperature-dependent seepage behaviors of rock fractures, and the predictions were found to be in good agreement with experimental data.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"20 ","pages":"Pages 83-99"},"PeriodicalIF":8.2,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000783/pdfft?md5=71e0e86eb2a98d0130ba426bca8443ad&pid=1-s2.0-S2467967424000783-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}