Fengwen Lai , Songyu Liu , Jim Shiau , Mingpeng Liu , Guojun Cai , Ming Huang
{"title":"现有隧道附近深基坑变形评估的数据驱动建模","authors":"Fengwen Lai , Songyu Liu , Jim Shiau , Mingpeng Liu , Guojun Cai , Ming Huang","doi":"10.1016/j.undsp.2025.04.003","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores an integrated framework combining in-situ test-based numerical and data-driven modeling to assess the performance of a deep excavation-tunnel system. To achieve the goal, a case history of deep excavations adjacent to existing tunnels in silt/sand-dominated sediments is introduced to establish a base three-dimensional finite element (3D-FE) model. In-situ tests such as cone penetration test (CPT/CPTU) and seismic dilatometer test (DMT/SDMT), as an alternative to laboratory testing, are used to determine a set of advanced constitutive model parameters. The established excavation-tunnel numerical model is then validated against filed monitoring data. A dataset from numerical simulation is created for training and testing four machine learning models (i.e., artificial neural network (ANN), support vector machines (SVM), random forest (RF), and light gradient boosting machine (LightGBM)), which predict the maximum wall deflection, ground surface settlement, horizontal and vertical displacements of the tunnel. Results show that the ANN model outperforms other models in prediction capacity. Its generalization ability in practice is further enhanced by comparing field measurement data and empirical equations. The findings suggest that, with the integrated in-situ tests, FE and ANN modeling could be used to predict deformation responses of deep excavations close to existing tunnels in soft soil. The present study is useful and valuable for practical risk assessment and mitigation decisions.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"24 ","pages":"Pages 162-179"},"PeriodicalIF":8.3000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven modeling for evaluating deformation of a deep excavation near existing tunnels\",\"authors\":\"Fengwen Lai , Songyu Liu , Jim Shiau , Mingpeng Liu , Guojun Cai , Ming Huang\",\"doi\":\"10.1016/j.undsp.2025.04.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores an integrated framework combining in-situ test-based numerical and data-driven modeling to assess the performance of a deep excavation-tunnel system. To achieve the goal, a case history of deep excavations adjacent to existing tunnels in silt/sand-dominated sediments is introduced to establish a base three-dimensional finite element (3D-FE) model. In-situ tests such as cone penetration test (CPT/CPTU) and seismic dilatometer test (DMT/SDMT), as an alternative to laboratory testing, are used to determine a set of advanced constitutive model parameters. The established excavation-tunnel numerical model is then validated against filed monitoring data. A dataset from numerical simulation is created for training and testing four machine learning models (i.e., artificial neural network (ANN), support vector machines (SVM), random forest (RF), and light gradient boosting machine (LightGBM)), which predict the maximum wall deflection, ground surface settlement, horizontal and vertical displacements of the tunnel. Results show that the ANN model outperforms other models in prediction capacity. Its generalization ability in practice is further enhanced by comparing field measurement data and empirical equations. The findings suggest that, with the integrated in-situ tests, FE and ANN modeling could be used to predict deformation responses of deep excavations close to existing tunnels in soft soil. The present study is useful and valuable for practical risk assessment and mitigation decisions.</div></div>\",\"PeriodicalId\":48505,\"journal\":{\"name\":\"Underground Space\",\"volume\":\"24 \",\"pages\":\"Pages 162-179\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Underground Space\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2467967425000583\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967425000583","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Data-driven modeling for evaluating deformation of a deep excavation near existing tunnels
This study explores an integrated framework combining in-situ test-based numerical and data-driven modeling to assess the performance of a deep excavation-tunnel system. To achieve the goal, a case history of deep excavations adjacent to existing tunnels in silt/sand-dominated sediments is introduced to establish a base three-dimensional finite element (3D-FE) model. In-situ tests such as cone penetration test (CPT/CPTU) and seismic dilatometer test (DMT/SDMT), as an alternative to laboratory testing, are used to determine a set of advanced constitutive model parameters. The established excavation-tunnel numerical model is then validated against filed monitoring data. A dataset from numerical simulation is created for training and testing four machine learning models (i.e., artificial neural network (ANN), support vector machines (SVM), random forest (RF), and light gradient boosting machine (LightGBM)), which predict the maximum wall deflection, ground surface settlement, horizontal and vertical displacements of the tunnel. Results show that the ANN model outperforms other models in prediction capacity. Its generalization ability in practice is further enhanced by comparing field measurement data and empirical equations. The findings suggest that, with the integrated in-situ tests, FE and ANN modeling could be used to predict deformation responses of deep excavations close to existing tunnels in soft soil. The present study is useful and valuable for practical risk assessment and mitigation decisions.
期刊介绍:
Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.