Xiao Yuan , Shuying Wang , Tongming Qu , Huanhuan Feng , Pengfei Liu , Junhao Zeng
{"title":"基于主动查询的多保真度知识继承技术在机械化隧道掘进过程中的应用","authors":"Xiao Yuan , Shuying Wang , Tongming Qu , Huanhuan Feng , Pengfei Liu , Junhao Zeng","doi":"10.1016/j.undsp.2025.04.010","DOIUrl":null,"url":null,"abstract":"<div><div>Muck clogging during shield tunneling often leads to reduced construction efficiency, increased costs and potential safety hazards. Traditional methods for predicting muck clogging primarily rely on the operator’s experience and conventional risk maps, but have limitations in dealing with complex construction conditions. To address these issues, this study presents a Monte-Carlo dropout (MCD)-assisted multi-fidelity neural network (MFNN) framework for effective prediction of muck clogging risk. First, a low-fidelity model is trained based on synthesized data using clogging risk maps. Subsequently, in-situ tunneling data are used as high-fidelity data to train multi-fidelity models. MCD serves to evaluate the uncertainty of the MFNN’s inference, combined with an active learning strategy to refine the low-fidelity model via iterative training of the high-fidelity model. Experimental results show that the MCD-assisted MFNN framework captures clogging features more effectively than traditional machine learning models that use only single-fidelity data, especially in scenarios with imbalanced data. This study provides a viable solution for complex problems in shield tunneling by fully utilizing both experiential knowledge accumulated in engineering practice and field monitoring data, demonstrating the potential of integrating knowledge and data in tackling some challenges that were previously unresolved.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"24 ","pages":"Pages 371-386"},"PeriodicalIF":8.3000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-fidelity knowledge inheritance with active querying for data-driven clogging prediction during mechanized tunneling\",\"authors\":\"Xiao Yuan , Shuying Wang , Tongming Qu , Huanhuan Feng , Pengfei Liu , Junhao Zeng\",\"doi\":\"10.1016/j.undsp.2025.04.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Muck clogging during shield tunneling often leads to reduced construction efficiency, increased costs and potential safety hazards. Traditional methods for predicting muck clogging primarily rely on the operator’s experience and conventional risk maps, but have limitations in dealing with complex construction conditions. To address these issues, this study presents a Monte-Carlo dropout (MCD)-assisted multi-fidelity neural network (MFNN) framework for effective prediction of muck clogging risk. First, a low-fidelity model is trained based on synthesized data using clogging risk maps. Subsequently, in-situ tunneling data are used as high-fidelity data to train multi-fidelity models. MCD serves to evaluate the uncertainty of the MFNN’s inference, combined with an active learning strategy to refine the low-fidelity model via iterative training of the high-fidelity model. Experimental results show that the MCD-assisted MFNN framework captures clogging features more effectively than traditional machine learning models that use only single-fidelity data, especially in scenarios with imbalanced data. This study provides a viable solution for complex problems in shield tunneling by fully utilizing both experiential knowledge accumulated in engineering practice and field monitoring data, demonstrating the potential of integrating knowledge and data in tackling some challenges that were previously unresolved.</div></div>\",\"PeriodicalId\":48505,\"journal\":{\"name\":\"Underground Space\",\"volume\":\"24 \",\"pages\":\"Pages 371-386\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Underground Space\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2467967425000753\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967425000753","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Multi-fidelity knowledge inheritance with active querying for data-driven clogging prediction during mechanized tunneling
Muck clogging during shield tunneling often leads to reduced construction efficiency, increased costs and potential safety hazards. Traditional methods for predicting muck clogging primarily rely on the operator’s experience and conventional risk maps, but have limitations in dealing with complex construction conditions. To address these issues, this study presents a Monte-Carlo dropout (MCD)-assisted multi-fidelity neural network (MFNN) framework for effective prediction of muck clogging risk. First, a low-fidelity model is trained based on synthesized data using clogging risk maps. Subsequently, in-situ tunneling data are used as high-fidelity data to train multi-fidelity models. MCD serves to evaluate the uncertainty of the MFNN’s inference, combined with an active learning strategy to refine the low-fidelity model via iterative training of the high-fidelity model. Experimental results show that the MCD-assisted MFNN framework captures clogging features more effectively than traditional machine learning models that use only single-fidelity data, especially in scenarios with imbalanced data. This study provides a viable solution for complex problems in shield tunneling by fully utilizing both experiential knowledge accumulated in engineering practice and field monitoring data, demonstrating the potential of integrating knowledge and data in tackling some challenges that were previously unresolved.
期刊介绍:
Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.