Chuangang Fan , Xiaoxian Fei , Maozhen Liu , Jiayi Ha , Linbo Du , Zhi Li , Yuhao Li , Dia Luan
{"title":"地温对施工隧道火灾烟气动力学的影响","authors":"Chuangang Fan , Xiaoxian Fei , Maozhen Liu , Jiayi Ha , Linbo Du , Zhi Li , Yuhao Li , Dia Luan","doi":"10.1016/j.undsp.2025.05.004","DOIUrl":null,"url":null,"abstract":"<div><div>The development of traffic networks in mountainous areas has led to an increasing number of tunnels being constructed in regions of high geothermal activity. This study examined the effects of geothermal temperature, heat release rate, and fire source location on temperature distribution and smoke movement in construction tunnel fires through a series of scaled-down experiments. Results showed that geothermal conditions heat the air, creating layered flow within construction tunnels. The temperature and velocity of the induced airflow along the tunnel length were characterized. The upper airflow caused by geothermal conditions hinders the spread of smoke toward the tunnel face, resulting in a complex thermal stratification phenomenon. A model for predicting the smoke diffusion length upstream of the fire source was developed, considering geothermal temperature, heat release rate, and fire source location. Additionally, the ceiling temperature distribution was analyzed, showing that downstream temperature decay is insensitive to fire location, while upstream temperature decay can be divided into geothermal-affected and non-affected zones based on the fire source position. Prediction models for the ceiling temperature distribution upstream and downstream were established, respectively. These findings enhance the understanding of smoke dynamics in construction tunnel fires under high geothermal conditions.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"25 ","pages":"Pages 1-18"},"PeriodicalIF":8.3000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of geothermal temperature on smoke dynamics in construction tunnel fires\",\"authors\":\"Chuangang Fan , Xiaoxian Fei , Maozhen Liu , Jiayi Ha , Linbo Du , Zhi Li , Yuhao Li , Dia Luan\",\"doi\":\"10.1016/j.undsp.2025.05.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of traffic networks in mountainous areas has led to an increasing number of tunnels being constructed in regions of high geothermal activity. This study examined the effects of geothermal temperature, heat release rate, and fire source location on temperature distribution and smoke movement in construction tunnel fires through a series of scaled-down experiments. Results showed that geothermal conditions heat the air, creating layered flow within construction tunnels. The temperature and velocity of the induced airflow along the tunnel length were characterized. The upper airflow caused by geothermal conditions hinders the spread of smoke toward the tunnel face, resulting in a complex thermal stratification phenomenon. A model for predicting the smoke diffusion length upstream of the fire source was developed, considering geothermal temperature, heat release rate, and fire source location. Additionally, the ceiling temperature distribution was analyzed, showing that downstream temperature decay is insensitive to fire location, while upstream temperature decay can be divided into geothermal-affected and non-affected zones based on the fire source position. Prediction models for the ceiling temperature distribution upstream and downstream were established, respectively. These findings enhance the understanding of smoke dynamics in construction tunnel fires under high geothermal conditions.</div></div>\",\"PeriodicalId\":48505,\"journal\":{\"name\":\"Underground Space\",\"volume\":\"25 \",\"pages\":\"Pages 1-18\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Underground Space\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2467967425000820\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967425000820","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Effects of geothermal temperature on smoke dynamics in construction tunnel fires
The development of traffic networks in mountainous areas has led to an increasing number of tunnels being constructed in regions of high geothermal activity. This study examined the effects of geothermal temperature, heat release rate, and fire source location on temperature distribution and smoke movement in construction tunnel fires through a series of scaled-down experiments. Results showed that geothermal conditions heat the air, creating layered flow within construction tunnels. The temperature and velocity of the induced airflow along the tunnel length were characterized. The upper airflow caused by geothermal conditions hinders the spread of smoke toward the tunnel face, resulting in a complex thermal stratification phenomenon. A model for predicting the smoke diffusion length upstream of the fire source was developed, considering geothermal temperature, heat release rate, and fire source location. Additionally, the ceiling temperature distribution was analyzed, showing that downstream temperature decay is insensitive to fire location, while upstream temperature decay can be divided into geothermal-affected and non-affected zones based on the fire source position. Prediction models for the ceiling temperature distribution upstream and downstream were established, respectively. These findings enhance the understanding of smoke dynamics in construction tunnel fires under high geothermal conditions.
期刊介绍:
Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.