Underground Space最新文献

筛选
英文 中文
Lightweight defocus deblurring network for curved-tunnel line scanning using wide-angle lenses 使用广角镜头进行曲线隧道线扫描的轻量级去焦模糊网络
IF 8.2 1区 工程技术
Underground Space Pub Date : 2024-09-13 DOI: 10.1016/j.undsp.2024.06.005
Shaojie Qin , Taiyue Qi , Xiaodong Huang , Xiao Liang
{"title":"Lightweight defocus deblurring network for curved-tunnel line scanning using wide-angle lenses","authors":"Shaojie Qin ,&nbsp;Taiyue Qi ,&nbsp;Xiaodong Huang ,&nbsp;Xiao Liang","doi":"10.1016/j.undsp.2024.06.005","DOIUrl":"10.1016/j.undsp.2024.06.005","url":null,"abstract":"<div><div>High-resolution line scan cameras with wide-angle lenses are highly accurate and efficient for tunnel detection. However, due to the curvature of the tunnel, there are variations in object distance that exceed the depth of field of the lens, resulting in uneven defocus blur in the captured images. This can significantly affect the accuracy of defect recognition. While existing deblurring algorithms can improve image quality, they often prioritize results over inference time, which is not ideal for high-speed tunnel image acquisition. To address this issue, we developed a lightweight tunnel structure defect deblurring network (TSDDNet) for curved-tunnel line scanning with wide-angle lenses. Our method employs an innovative progressive structure that balances network depth and feature breadth to simultaneously achieve good performance and short inference time. The proposed depthwise ResBlocks significantly improves the parameter efficiency of the network. Additionally, the proposed feature refinement block captures the structurally similar features to enhance the image details, increasing the peak signal-to-noise ratio (PSNR). A raw dataset containing tunnel blur images was created using a high-resolution line scan camera and used to train and test our model. TSDDNet achieved a PSNR of 26.82 dB and a structural similarity index measure of 0.888, while using one-third of the parameters of comparable alternatives. Moreover, our method exhibited a higher computational speed than that of conventional methods, with inference times of 8.82 ms for a single 512 × 512 pixels image patch and 227.22 ms for completely processing a 2048 × 2560 pixels image. The test results indicated that the structural scalability of the network allows it to accommodate large inputs, making it effective for high-resolution images.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"20 ","pages":"Pages 218-240"},"PeriodicalIF":8.2,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142327181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental investigation on the failure characteristic and synergistic load-bearing mechanism of multi-layer linings for deep soft rock tunnels 深层软岩隧道多层衬砌的破坏特征和协同承载机理的试验研究
IF 8.2 1区 工程技术
Underground Space Pub Date : 2024-09-07 DOI: 10.1016/j.undsp.2024.06.004
Haibo Wang , Fuming Wang , Chengchao Guo , Lei Qin , Jun Liu , Tongming Qu
{"title":"Experimental investigation on the failure characteristic and synergistic load-bearing mechanism of multi-layer linings for deep soft rock tunnels","authors":"Haibo Wang ,&nbsp;Fuming Wang ,&nbsp;Chengchao Guo ,&nbsp;Lei Qin ,&nbsp;Jun Liu ,&nbsp;Tongming Qu","doi":"10.1016/j.undsp.2024.06.004","DOIUrl":"10.1016/j.undsp.2024.06.004","url":null,"abstract":"<div><div>Multi-layer linings have been widely used in deep rheological soft rock tunnels for the excellent performance in preventing large-deformation hazards. Previous studies have focused on the bearing capability of multi-layer lining, however, its failure characteristics and synergistic load-bearing mechanisms under high geo-stress are still unclear. To fill the gap, three-dimensional geomechanical model tests were conducted and synergistic mechanisms were analysed in this study. The model test was divided into normal loading, excavating, and overloading stages. The surrounding rock deformation was monitored by using an improved high-precise extensometer measurement system. Results show that the largest radial deformation appears on the sidewall, followed by the floor and vault during the excavating stage. The relative convergence deformation of sidewalls springing reaches 1.32 mm. The failure characteristics of the multi-layer linings during the overloading stage undergo an evolution of stability, crack initiation, local failure, and collapse, with a safety factor of 1.0–1.6, 1.6–2.0, and 2.0–2.2, respectively. The synergistic load-bearing mechanism analysis results suggest that the early stiffness and late yielding deformation capacity of large deformation support measures play important roles in stability maintenance both in the construction and operation of deep soft rock tunnels. Therefore, the combination of yielding support or a compressible layer with reinforced support is recommended to mitigate the effect of the high geo-stress.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"20 ","pages":"Pages 259-276"},"PeriodicalIF":8.2,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142358047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Full-scale loading test for shield tunnel segments: Load-bearing performance and failure patterns of lining structures 盾构隧道分段全尺寸加载试验:衬砌结构的承载性能和破坏模式
IF 8.2 1区 工程技术
Underground Space Pub Date : 2024-09-07 DOI: 10.1016/j.undsp.2024.05.003
Gang Wei , Feifan Feng , Shiyu Huang , Tianbao Xu , Jiaxuan Zhu , Xiao Wang , Chengwei Zhu
{"title":"Full-scale loading test for shield tunnel segments: Load-bearing performance and failure patterns of lining structures","authors":"Gang Wei ,&nbsp;Feifan Feng ,&nbsp;Shiyu Huang ,&nbsp;Tianbao Xu ,&nbsp;Jiaxuan Zhu ,&nbsp;Xiao Wang ,&nbsp;Chengwei Zhu","doi":"10.1016/j.undsp.2024.05.003","DOIUrl":"10.1016/j.undsp.2024.05.003","url":null,"abstract":"<div><div>To explore the load-bearing performance and the failure patterns of the lining structures, a full-scale loading test on the three-ring staggered assembled shield tunnel segments is carried out through a hydraulic loading system. In the experimental study, the segments’ internal force, convergence deformation, and displacement, and the bolts’ internal force, are analyzed. According to the experimental results, the relationship between internal force and deformation is obtained to determine the residual bearing capacity of the shield tunnel at each stage. Three stages are specified for the evolution of the segment’s maximum bending moment during the loading process, in which, the elastic stage is the main and longest stage, in which the bending moment of the segment increases the most. There are two stages for convergence deformation development and segment misalignment development. At the end of loading, the segment’s maximum positive and negative convergence values reach 61.22 and −57.69 mm, respectively. Besides, the maximum segment misalignment is 3.67 mm, which occurs in the direction of 90°. The segment cracks when its maximum convergence value reaches 25.03 mm. Moreover, there are signs of fracturing on the waist joint of the segment when its maximum convergence value reaches 32.73 mm. The concrete at the waist joint starts fracturing in pieces when the segment’s maximum convergence value reaches 38.93 mm, which is defined as the type of shear failure. Finally, the bearing capacity of shield tunnels during segment failure period can be evaluated by using the corresponding relationship between deformation and internal force.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"20 ","pages":"Pages 197-217"},"PeriodicalIF":8.2,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Grain-based coupled thermo-mechanical modeling for stressed heterogeneous granite under thermal shock 热冲击下受力异质花岗岩的基于晶粒的热机械耦合建模
IF 8.2 1区 工程技术
Underground Space Pub Date : 2024-09-07 DOI: 10.1016/j.undsp.2024.06.003
Zheng Yang , Ming Tao , Wenbin Fei , Tubing Yin , P.G. Ranjith
{"title":"Grain-based coupled thermo-mechanical modeling for stressed heterogeneous granite under thermal shock","authors":"Zheng Yang ,&nbsp;Ming Tao ,&nbsp;Wenbin Fei ,&nbsp;Tubing Yin ,&nbsp;P.G. Ranjith","doi":"10.1016/j.undsp.2024.06.003","DOIUrl":"10.1016/j.undsp.2024.06.003","url":null,"abstract":"<div><div>Microscopic damage and macroscopic mechanical properties of granite under the coupling effect of thermal load and initial stress are crucial considerations for the safe construction of underground geo-energy engineering. However, visualizing real-time micro-crack processes in rocks under high-temperature and high-pressure conditions using the current experimental techniques remains challenging. In this study, a numerical method is developed to analyze the thermally induced damage in heterogeneous granite under the coupled influence of initial stress and thermal loading. A biaxial thermo-mechanical grain-based model considering real mineral distribution is established based on digital image processing technology, the grain-based modeling method, and heat conduction theory. The microscopic parameters are calibrated and the effectiveness of the model is verified based on thermal shock and uniaxial compression experiments. The thermal destruction mechanism of granite under initial stress from a microscopic perspective was unveiled for the first time. During the thermal shock process, the stress within the rock does not remain constant at the initial stress value. Instead, it changes continuously with the progression of heat conduction. The impact of the initial stress on the thermally induced cracks is relatively minor. Cooling causes more damage to the rock than heating during thermal shock. The intragranular cracks of quartz consistently outnumber other intragranular or intergranular cracks during thermal shock. The initial stress and thermal shock damage enhance and weaken the biaxial peak strength of granite, respectively. The weakening effect of thermal shock on the peak strength becomes more pronounced at a higher initial stress. These research findings and proposed research techniques contribute to the management and optimization of underground geo-energy engineering.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"20 ","pages":"Pages 174-196"},"PeriodicalIF":8.2,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Model test on the effects of shield machine cutterhead vibration on tunnel face stability in sandy ground 砂质地层中盾构机刀盘振动对隧道工作面稳定性影响的模型试验
IF 8.2 1区 工程技术
Underground Space Pub Date : 2024-08-30 DOI: 10.1016/j.undsp.2024.04.009
Meng-Bo Liu , Jun-Hua Xiao , Shao-Ming Liao , Zhi-Yong Liu , Jun-Zuo He , Yan-Qing Men , Jia-Cheng Sun
{"title":"Model test on the effects of shield machine cutterhead vibration on tunnel face stability in sandy ground","authors":"Meng-Bo Liu ,&nbsp;Jun-Hua Xiao ,&nbsp;Shao-Ming Liao ,&nbsp;Zhi-Yong Liu ,&nbsp;Jun-Zuo He ,&nbsp;Yan-Qing Men ,&nbsp;Jia-Cheng Sun","doi":"10.1016/j.undsp.2024.04.009","DOIUrl":"10.1016/j.undsp.2024.04.009","url":null,"abstract":"<div><div>Face stability is one of the essential problems in shield tunneling. When tunneling in cobble stratum or mixed face ground conditions, significant cutting-induced cutterhead vibration would occur and affect the face stability. To reveal the mechanism and effect of vibration on the tunnel face stability, a transparent tunnel model with a movable vibration exciter was designed and a series of model tests were performed under different vibration magnitudes <em>A</em><sub>a</sub> and frequencies <em>f</em>. Meanwhile, particle image velocimetry was used to reveal the displacement field and the failure pattern of the tunnel face. The test results indicate that the cutting-induced vibration produces a significant reduction effect on the tunnel face stability, as expressed by the increase of the face support pressure and the failure zone when the vibration magnitude and frequency increase. Compared with the static unloading conditions, the width of the failure wedge <em>L</em><sub>wt</sub> increased by about 5.75% and 35.66% for the loose and dense sand, respectively, under dynamic unloading conditions (<em>A</em><sub>a</sub> = 0.2<em>g</em>, <em>f</em> = 10 Hz). The limit support pressure increased up to about 0.20<em>γD</em> at a vibration of 0.3<em>g</em> and 50 Hz, much larger than those of static conditions, which were about 0.08<em>γD</em>–0.09<em>γD</em>. An observable self-stabilizing arch can be formed in dense sand under static unloading conditions, while under dynamic unloading conditions, the long-time stable soil arch would not occur. The contributions of this paper could provide an insightful understanding of the effects of cutterhead vibration on tunnel face stability.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"22 ","pages":"Pages 39-54"},"PeriodicalIF":8.2,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143512394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental study on the performance of shield tunnel tail grout in ground 盾构隧道尾部注浆在地层中的性能试验研究
IF 8.2 1区 工程技术
Underground Space Pub Date : 2024-08-29 DOI: 10.1016/j.undsp.2024.07.001
Jiaxin Liang , Wei Liu , Xinsheng Yin , Wentao Li , Zhe Yang , Jichen Yang
{"title":"Experimental study on the performance of shield tunnel tail grout in ground","authors":"Jiaxin Liang ,&nbsp;Wei Liu ,&nbsp;Xinsheng Yin ,&nbsp;Wentao Li ,&nbsp;Zhe Yang ,&nbsp;Jichen Yang","doi":"10.1016/j.undsp.2024.07.001","DOIUrl":"10.1016/j.undsp.2024.07.001","url":null,"abstract":"<div><div>Shield tail grouting is an important measure to control tunnelling-induced ground deformation by injecting prepared grouting materials to fill the tail gap. The working performance of grout is usually invisible and hard to obtain in construction. This paper carries out an experimental study to investigate the tail grout behavior in ground. In the current research, a testing device is developed to explore the grout behavior in varying soils. The grout working performance is evaluated not only by the liquid grout properties such as fluidity, consistency, bleeding rate, stone rate and compressed deformation but also solid grout properties such as unconfined compressive strength and permeability. Three typical grouts are chosen and their behaviors in the various soils are observed. To take an insight on the behaviors, scanning electron microscopy and mercury intrusion porosimetry analysis are employed. The microstructure of solid grout is a sign of its working performance. The observation shows that the solid grout micro-structure is influenced by grout proportions, pressure, and ground permeabilities. The experimental results are applied in the case of Beijing Metro Line 12 for validation and as a result, the ground movement is inhibited due to high performance of tail grout.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"20 ","pages":"Pages 277-292"},"PeriodicalIF":8.2,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel multifractal-based classification model for the quality grades of surrounding rock within tunnels 基于多分形的隧道围岩质量等级分类新模型
IF 8.2 1区 工程技术
Underground Space Pub Date : 2024-08-29 DOI: 10.1016/j.undsp.2024.06.002
Junjie Ma , Tianbin Li , Zhen Zhang , Roohollah Shirani Faradonbeh , Mostafa Sharifzadeh , Chunchi Ma
{"title":"Novel multifractal-based classification model for the quality grades of surrounding rock within tunnels","authors":"Junjie Ma ,&nbsp;Tianbin Li ,&nbsp;Zhen Zhang ,&nbsp;Roohollah Shirani Faradonbeh ,&nbsp;Mostafa Sharifzadeh ,&nbsp;Chunchi Ma","doi":"10.1016/j.undsp.2024.06.002","DOIUrl":"10.1016/j.undsp.2024.06.002","url":null,"abstract":"<div><div>Understanding the variation patterns of tunnel boring machine (TBM) operational parameters is crucial for assessing engineering geological conditions and quality grades of surrounding rock within tunnels. Studying the multifractal characteristics of the TBM operational parameters can help identify the patterns, but the relevant research has not yet been explored. This paper proposed a novel classification model for quality grades of surrounding rock in TBM tunnels based on multifractal analysis theory. Initially, the statistical characteristics of eight TBM cycle data with different grades of surrounding rock were explored. Subsequently, the method of calculating and analyzing the multifractal characteristic parameters of the TBM operational data was deduced and summarized. The research results showed that the TBM operational parameters of cutterhead torque, total thrust, advance rate, and cutterhead rotation speed have significant multifractal characteristics. Its multifractal dimension, midpoint slope of the generalized fractal spectrum, and singularity strength range can be used to evaluate the surrounding rock grades of the tunnel. Finally, a novel classification model for the tunnel surrounding rocks based on the multifractal characteristic parameters was proposed using the multiple linear regression method, and the model was verified through four TBM cycle data containing different surrounding rock grades. The results showed that the proposed multifractal-based classification model for tunnel surrounding rocks has high accuracy and applicability. This study not only achieves multifractal feature representation and surrounding rock classification for TBM operational parameters but also holds the potential for adaptive adjustment of TBM operational parameters and automated tunneling applications.</div></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"20 ","pages":"Pages 140-156"},"PeriodicalIF":8.2,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solute transport in stochastic discrete fracture-matrix systems: Impact of network structure 随机离散断裂-基质系统中的溶质迁移:网络结构的影响
IF 8.2 1区 工程技术
Underground Space Pub Date : 2024-08-24 DOI: 10.1016/j.undsp.2024.05.002
Yingtao Hu , Liangchao Zou , Wenjie Xu , Liangtong Zhan , Peng Xia , Duanyang Zhuang
{"title":"Solute transport in stochastic discrete fracture-matrix systems: Impact of network structure","authors":"Yingtao Hu ,&nbsp;Liangchao Zou ,&nbsp;Wenjie Xu ,&nbsp;Liangtong Zhan ,&nbsp;Peng Xia ,&nbsp;Duanyang Zhuang","doi":"10.1016/j.undsp.2024.05.002","DOIUrl":"10.1016/j.undsp.2024.05.002","url":null,"abstract":"<div><p>Obtaining a comprehensive understanding of solute transport in fractured rocks is crucial for various geoengineering applications, including waste disposal and construction of geo-energy infrastructure. It was realized that solute transport in fractured rocks is controlled by stochastic discrete fracture-matrix systems. However, the impacts and specific uncertainty caused by fracture network structures on solute transport in discrete fracture-matrix systems have yet not been fully understood. In this article, we aim to investigate the influence of fracture network structure on solute transport in stochastic discrete fracture-matrix systems. The fluid flow and solute transport are simulated using a three-dimensional discrete fracture matrix model with considering various values of fracture density and size (i.e., radius). The obtained results reveal that as the fracture density or minimum fracture radius increases, the corresponding fluid flow and solute transport channels increase, and the solute concentration distribution range expands in the matrix. This phenomenon, attributed to the enhanced connectivity of the fracture network, leads to a rise in the effluent solute concentration mean value from 0.422 to 0.704, or from 0.496 to 0.689. Furthermore, when solute transport reached a steady state, the coefficient of variation of effluent concentration decreases with the increasing fracture density or minimum fracture radius in different scenarios, indicating an improvement in the homogeneity of solute transport results. The presented analysis results of solute transport in stochastic discrete fracture-matrix systems can be helpful for uncertainty management in the geological disposal of high-level radioactive waste.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"20 ","pages":"Pages 69-82"},"PeriodicalIF":8.2,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000837/pdfft?md5=e1fe3b3631546be68a8186376f3b0a76&pid=1-s2.0-S2467967424000837-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physical and mechanical response of large-diameter shield tunnel lining structure under non-uniform fire: A full-scale fire test-based study 大直径盾构隧道衬砌结构在非均匀火灾下的物理和机械响应:基于全尺寸火灾试验的研究
IF 8.2 1区 工程技术
Underground Space Pub Date : 2024-08-22 DOI: 10.1016/j.undsp.2024.06.001
Da-Long Jin , Hui Jin , Da-Jun Yuan , Pan-Pan Cheng , Dong Pan
{"title":"Physical and mechanical response of large-diameter shield tunnel lining structure under non-uniform fire: A full-scale fire test-based study","authors":"Da-Long Jin ,&nbsp;Hui Jin ,&nbsp;Da-Jun Yuan ,&nbsp;Pan-Pan Cheng ,&nbsp;Dong Pan","doi":"10.1016/j.undsp.2024.06.001","DOIUrl":"10.1016/j.undsp.2024.06.001","url":null,"abstract":"<div><p>When a fire occurs in an underground shield tunnel, it can result in substantial property damage and cause permanent harm to the tunnel lining structure. This is especially true for large-diameter shield tunnels that have numerous segments and joints, and are exposed to specific fire conditions in certain areas. This paper constructs a full-scale shield tunnel fire test platform and conducts a non-uniform fire test using the lining system of a three-ring large-diameter shield tunnel with an inner diameter of 10.5 m. Based on the tests, the temperature field distribution, high-temperature bursting, cracking phenomena, and deformation under fire conditions are observed. Furthermore, the post-fire damage forms of tunnel lining structures are obtained through the post-fire ultimate loading test, and the corresponding mechanism is explained. The test results illustrate that the radial and circumferential distribution of internal temperature within the tunnel lining, as well as the radial temperature gradient distribution on the inner surface of the lining, have non-uniform distribution characteristics. As a result, the macroscopic phenomena of lining concrete bursting and crack development during the fire test mainly occur near the fire source, where the temperature rise gradient is the highest. In addition, the lining structure has a deformation characteristic of local outward expansion and cannot recover after the fire load is removed. The ultimate form of damage after the fire is dominated by crush damage from the inside out of the lining joints in the fire-exposed area. The above results serve as a foundation for future tunnel fire safety design and evaluation.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"20 ","pages":"Pages 1-16"},"PeriodicalIF":8.2,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000825/pdfft?md5=8e388e786b80d4a679e702694beefa95&pid=1-s2.0-S2467967424000825-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid deep learning approach for rock tunnel deformation prediction based on spatio-temporal patterns 基于时空模式的岩石隧道变形预测混合深度学习方法
IF 8.2 1区 工程技术
Underground Space Pub Date : 2024-08-17 DOI: 10.1016/j.undsp.2024.04.008
Junfeng Sun , Yong Fang , Hu Luo , Zhigang Yao , Long Xiang , Jianfeng Wang , Yubo Wang , Yifan Jiang
{"title":"Hybrid deep learning approach for rock tunnel deformation prediction based on spatio-temporal patterns","authors":"Junfeng Sun ,&nbsp;Yong Fang ,&nbsp;Hu Luo ,&nbsp;Zhigang Yao ,&nbsp;Long Xiang ,&nbsp;Jianfeng Wang ,&nbsp;Yubo Wang ,&nbsp;Yifan Jiang","doi":"10.1016/j.undsp.2024.04.008","DOIUrl":"10.1016/j.undsp.2024.04.008","url":null,"abstract":"<div><p>The ability to predict tunnel deformation holds great significance for ensuring the reliability, safety, and sustainability of tunnel structures. However, existing deformation prediction models often simplify or overlook the impact of spatial characteristics on deformation by treating it as a time series prediction issue. This study utilizes monitoring data from the Grand Canyon Tunnel and introduces an effective data-driven method for predicting tunnel deformation based on the spatio-temporal characteristics of the historical deformation of adjacent sections. The proposed model, a combination of graph attention network (GAT) and bidirectional long and short-term memory network (Bi-LSTM), is equipped with robust spatio-temporal predictive capabilities. Additionally, the study explores other possible spatial connections and the scalability of the model. The results indicate that the proposed model outperforms other deep learning models, achieving favorable root mean square error (<span><math><mrow><mi>RMSE</mi></mrow></math></span>), mean absolute error (<span><math><mrow><mi>MAE</mi></mrow></math></span>), and coefficient of determination (<span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>) values of 0.34 mm, 0.23 mm, and 0.94, respectively. The graph structure based on intuitive spatial connections proves more suitable for meeting the challenges of predicting deformation. Integrating GAT-LSTM with transfer learning technology, remains stable performance when extended to other tunnels with limited data.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"20 ","pages":"Pages 100-118"},"PeriodicalIF":8.2,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000813/pdfft?md5=553352262c269f7f53faaab720bd548a&pid=1-s2.0-S2467967424000813-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信