{"title":"Study of engineering developing decagonal-like rational approximant structure of Al–Ni–Cu–Fe–Mn–Cr senary system in aluminum alloy through additive manufacturing","authors":"Kai-Chieh Chang, Fei-Yi Hung, Jun-Ren Zhao","doi":"10.1016/j.mtadv.2024.100513","DOIUrl":"https://doi.org/10.1016/j.mtadv.2024.100513","url":null,"abstract":"Quasi-periodic materials hold unique properties, but mass-producing bulk materials with such structures remains challenging. The rational approximant phase belongs to the Bravais crystal system but exhibits irrational cut features and diffraction symmetries, which are similar to quasicrystals. This study uses additive manufacturing (AM) and prolonged annealing to create an aluminum-based alloy featuring a quasicrystal-like rational approximant phase, Al(Cu, Ni)(Cr, Mn, Fe), overcoming the production limitations of reproducible quasi-periodic materials. This phase transformation occurs at the Al–AlFeNi interface, resulting in a monoclinic periodic structure with long-range translational symmetry. The structure comprises sublattices of stars and compressed hexagons, forming tile mode coverings with pseudo-five-fold decagonal shield-like tiles (SLTs) through transition-element atoms. Furthermore, HAADF imaging reveals clear dark monoclinic rhombic patterns with long-range ordered translational symmetry, free from atomic defects. The rational approximant phase has been verified crystallography through X-ray diffraction, confirming its translational symmetry. Additionally, the Al(Zr, Sc) phase facilitates the phase transformation process through lattice interactions. These findings introduce a novel perspective on the phase transformation in decagonal-like rational approximants and broaden the realm for future engineering applications.","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"47 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141548423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"3D printed MXene architectures for a plethora of smart applications","authors":"Maria Leonor Matias, Cláudia Pereira, Henrique Vazão Almeida, Santanu Jana, Shrabani Panigrahi, Ugur Deneb Menda, Daniela Nunes, Elvira Fortunato, Rodrigo Martins, Suman Nandy","doi":"10.1016/j.mtadv.2024.100512","DOIUrl":"https://doi.org/10.1016/j.mtadv.2024.100512","url":null,"abstract":"This review explores the integration of titanium carbide (TiCT) MXene materials with three-dimensional (3D) printing techniques for advanced functional applications. TiCT MXenes exhibit remarkable intrinsic properties like high surface area, metallic conductivity, and flexible surface functionalities. These materials can be associated to 3D printing techniques that offer solutions to conventional techniques’ limitations, enabling the creation of high-performance, free-standing, and multiscale devices with precise control over architecture. Additionally, 3D printing techniques are cost-effective, energy-saving, and sustainable, reducing material waste and carbon footprint. This review begins by presenting an overview of two-dimensional (2D) materials and their distinct characteristics when comparted to the MXenes family, followed by discussions on synthesis routes for 3D printable MXene inks and fabrication methods for complex MXene-based structures. Various applications of 3D-printed MXene architectures are explored, particularly in energy storage devices like supercapacitors and batteries, leveraging MXenes exceptional electrical conductivity and high surface area to enhance energy storage capabilities. Moreover, the potential of 3D-printed MXene architectures in smart devices, incorporating technologies such as artificial intelligence and connectivity features, is highlighted, particularly in smart sensors, biosensors, electromagnetic shielding, and environmental remediation.","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"48 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Data-driven discovery of novel metal organic frameworks with superior ammonia adsorption capacity","authors":"Sanghyun Kim, Joo-Hyoung Lee","doi":"10.1016/j.mtadv.2024.100510","DOIUrl":"https://doi.org/10.1016/j.mtadv.2024.100510","url":null,"abstract":"Ammonia (NH) has been a subject of great interest due to its important roles in diverse technological applications. However, high toxicity and corrosiveness of NH has made it an important task to develop an efficient carrier to safely capture NH with high capacity. Here, we employ a machine learning (ML) model to discover high-performance metal organic frameworks (MOFs) that will work as efficient NH carriers. By constructing databases at two distinct conditions, adsorption and desorption, through Grand Canonical Monte Carlo (GCMC) simulations to train ML models, we identify eight novel MOFs as potentially efficient NH carriers through screening the large-scale MOF databases with the trained models and GCMC verification. The identified MOFs exhibit the average NH working capacity exceeding 1100 mg/g, and subsequent molecular dynamics simulations demonstrate mechanical stability of the predicted MOFs. Moreover, analyses of the diffusion mechanism within the proposed MOFs underscore the strong dependence of NH₃ gas diffusivity on the structural details of the materials.","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"11 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Halima El Aadad, Hicham El Hamzaoui, Gaëlle Brévalle-Wasilewskis, Rémy Bernard, Christophe Kinowski, Yves Quiquempois, Marc Douay
{"title":"Solmers: Versatile hybrid resins for nanometric 3D printing of silica-based photonic components","authors":"Halima El Aadad, Hicham El Hamzaoui, Gaëlle Brévalle-Wasilewskis, Rémy Bernard, Christophe Kinowski, Yves Quiquempois, Marc Douay","doi":"10.1016/j.mtadv.2024.100500","DOIUrl":"https://doi.org/10.1016/j.mtadv.2024.100500","url":null,"abstract":"Owning to their intrinsic properties, silica-based glasses are widely used in various technological fields, especially in photonics. However, high degree of flexibility is yet challenging in realization of next-generation miniaturized optical components. In this work, we develop an approach based on ‶Solmers″ hybrid resins allowing versatile two-photon polymerization 3D printing of silica glasses with 23 nm resolution, doping with Germanium and/or rare-earths elements. Other dopants such as gold nanoparticles were also incorporated for localized metallization. After 3D printing and sintering (1100–1300 °C), high optical quality glasses with low surface roughness (<0.2 nm) were obtained. Structural analyses confirmed the amorphous structure of silica glasses. Various mono- or multi-materials microstructures were successfully fabricated on fused silica substrates. Besides, this approach was extended to the functionalization of optical fibers for optical sensing applications in harsh environment (1000 °C). Compared to organic or organic-inorganic materials, these dense silica-based glasses with enhanced optical and structural properties will open new avenues for the development of emerging advanced optical components.","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"206 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tailoring the permittivity of passivated dyes to achieve stable and efficient perovskite solar cells with modulated defects","authors":"Rongxin Wang, Zhichao Lin, Xinhua Ouyang","doi":"10.1016/j.mtadv.2024.100501","DOIUrl":"https://doi.org/10.1016/j.mtadv.2024.100501","url":null,"abstract":"","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"23 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141147919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Weak Li-O bonds and small grains enable fast ion diffusion and electron transport for LiFePO4 cathode","authors":"Han-xin Wei, Dao-fa Ying, Jing-ju Liu, Yang Lv, Yu-tao Liu, Jiang-feng Wang, Xuan-lin Gong, Mu-yang Zhou, Zuo-sheng Li, Kuo Chen, Luo-jia Chen, Chuan-ping Wu, Bao-hui Chen","doi":"10.1016/j.mtadv.2024.100502","DOIUrl":"https://doi.org/10.1016/j.mtadv.2024.100502","url":null,"abstract":"","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"39 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141147921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thalita Maysha Herninda, Zi-Ying Chen, Ching-Hwa Ho
{"title":"Structural, optical and electrical properties in multilayer SnS2(1-x)Se2(x) compounds for energy, thermoelectric and photocatalytic application","authors":"Thalita Maysha Herninda, Zi-Ying Chen, Ching-Hwa Ho","doi":"10.1016/j.mtadv.2024.100498","DOIUrl":"https://doi.org/10.1016/j.mtadv.2024.100498","url":null,"abstract":"Band gap engineering is crucial in the development of two-dimensional layered materials in nanoelectronics, optoelectronics, and photonics fields. In this study, we present characteristics of layered SnSSe (0 ≤ x ≤ 1) ternary alloys grown via chemical vapor transport (CVT) with tunable compositions. Polarized micro-Raman spectroscopy shows the existence of intralayer E and A modes in all the compositions. The A mode demonstrates a pronounced resonant intensity, whilst the E mode is significantly weaker. In the ternary compositions, two groups of E and A modes undergo shift, reflecting lattice and bond transitions from S-rich to Se-rich compositions. Micro-thermoreflectance and optical transmission spectroscopy reveal tunable optical properties consistent with the alloy-composition change. All samples exhibit a single band-edge transition peak, shifting from 1.3 eV (for pure SnSe) to 2.3 eV (for pure SnS), indicating high-quality alloy nanosheets of SnSSe. The optical and electrical applications, such as photodegradation, photoconductivity, and thermoelectric performance are also explored. The alteration in selenium composition within SnSSe is observed to significantly influence potential applications of the materials. The materials with a predominant selenium composition exhibit superior electrical and thermoelectric properties, whereas those with a sulfur-dominant composition manifest enhanced optical characteristics. The engineered 2D structures presents promising opportunities for investigating their fundamental physical properties and also exploring their wide-range applications in electronic and optoelectronic devices, as well as in the field of energy and photocatalytic application.","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"160 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141147924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"“ Review and perspective on additive manufacturing of refractory high entropy alloys”","authors":"Muhammad Raies Abdullah, Zhen Peng","doi":"10.1016/j.mtadv.2024.100497","DOIUrl":"https://doi.org/10.1016/j.mtadv.2024.100497","url":null,"abstract":"","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"18 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141147953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Geoffrey Rivers, Anna Lion, Nur Rofiqoh Eviana Putri, Graham A. Rance, Cara Moloney, Vincenzo Taresco, Valentina Cuzzucoli Crucitti, Hannah Constantin, Maria Inês Evangelista Barreiros, Laura Ruiz Cantu, Christopher J. Tuck, Felicity R.A.J. Rose, Richard J.M. Hague, Clive J. Roberts, Lyudmila Turyanska, Ricky D. Wildman, Yinfeng He
{"title":"Enabling high-fidelity personalised pharmaceutical tablets through multimaterial inkjet 3D printing with a water-soluble excipient","authors":"Geoffrey Rivers, Anna Lion, Nur Rofiqoh Eviana Putri, Graham A. Rance, Cara Moloney, Vincenzo Taresco, Valentina Cuzzucoli Crucitti, Hannah Constantin, Maria Inês Evangelista Barreiros, Laura Ruiz Cantu, Christopher J. Tuck, Felicity R.A.J. Rose, Richard J.M. Hague, Clive J. Roberts, Lyudmila Turyanska, Ricky D. Wildman, Yinfeng He","doi":"10.1016/j.mtadv.2024.100493","DOIUrl":"https://doi.org/10.1016/j.mtadv.2024.100493","url":null,"abstract":"Additive manufacturing offers manufacture of personalised pharmaceutical tablets through design freedoms and material deposition control at an individual voxel level. This control goes beyond geometry and materials choices: inkjet based 3D printing enables the precise deposition (10–80 μm) of multiple materials, which permits integration of precise doses with tailored release rates; in the meanwhile, this technique has demonstrated its capability of high-volume personalised production. In this paper we demonstrate how two dissimilar materials, one water soluble and one insoluble, can be co-printed within a design envelope to dial up a range of release rates including slow (0.98 ± 0.04 mg/min), fast (4.07 ± 0.25 mg/min) and multi-stepped (2.17 ± 0.04 mg/min then 0.70 ± 0.13 mg/min) dissolution curves. To achieve this, we adopted poly-4-acryloylmorpholine (poly-ACMO) as a new photocurable water-soluble carrier and demonstrated its contemporaneous deposition with an insoluble monomer. The water soluble ACMO formulation with aspirin incorporated was successfully printed and cured under UV light and a wide variety of shapes with material distributions that control drug elution was successfully fabricated by inkjet based 3D printing technique, suggesting its viability as a future personalised solid dosage form fabrication routine.","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"5 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141063758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Errandonea, H.H.H. Osman, R. Turnbull, D. Diaz-Anichtchenko, A. Liang, J. Sanchez-Martin, C. Popescu, D. Jiang, H. Song, Y. Wang, F.J. Manjon
{"title":"Pressure-induced hypercoordination of iodine and dimerization of I2O6H in strontium di-iodate hydrogen-iodate (Sr(IO3)2HIO3)","authors":"D. Errandonea, H.H.H. Osman, R. Turnbull, D. Diaz-Anichtchenko, A. Liang, J. Sanchez-Martin, C. Popescu, D. Jiang, H. Song, Y. Wang, F.J. Manjon","doi":"10.1016/j.mtadv.2024.100495","DOIUrl":"https://doi.org/10.1016/j.mtadv.2024.100495","url":null,"abstract":"In this work, we report evidence of pressure-induced changes in the crystal structure of Sr(IO)HIO connected to changes the coordination of the iodine atom and the of the configuration of HIO and IO units. The changes favor iodine hypercoordination and happen in two steps on sample compression. Firstly, at 2.5 GPa, [HIO]·[IO] complexes are formed, and secondly, at 4.5 GPa, these complexes form dimers of [HIO]·[IO]·[IO]·[HIO]. The evidence is obtained from a combined experimental and theoretical study performed up to 20 GPa. Synchrotron powder X-ray diffraction, Raman spectroscopy, and optical-absorption experiments have been complemented with density-functional theory calculations, including the study of the topology of the electron density. The changes observed in the crystal structure are related to the transformation of secondary (halogen) bonds into electron-deficient multicenter bonds. The paper also discusses the effect of pressure on the compressibility of the Sr(IO)HIO crystal structure, its phonons, the electronic band gap, and the refractive index. Sr(IO)HIO was found to be highly compressible with an anisotropic compressibility. The softening of the internal I–O vibrations of IO units was also observed, together with a decrease of the band-gap energy (from 4.1 eV at 0 GPa to 3.7 eV at 20 GPa), a band-gap crossing, and a change in the topology of the band structure, with Sr(IO)HIO transforming from a direct gap semiconductor at 0 GPa to an indirect gap semiconductor beyond 6 GPa.","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"68 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141063909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}