Applied Microscopy最新文献

筛选
英文 中文
Hot stage microscopy and its applications in pharmaceutical characterization 热阶显微镜及其在药物表征中的应用
Applied Microscopy Pub Date : 2020-06-16 DOI: 10.1186/s42649-020-00032-9
Arun Kumar, Pritam Singh, Arun Nanda
{"title":"Hot stage microscopy and its applications in pharmaceutical characterization","authors":"Arun Kumar,&nbsp;Pritam Singh,&nbsp;Arun Nanda","doi":"10.1186/s42649-020-00032-9","DOIUrl":"https://doi.org/10.1186/s42649-020-00032-9","url":null,"abstract":"<p>Hot stage microscopy (HSM) is a thermal analysis technique that combines the best properties of thermal analysis and microscopy. HSM is rapidly gaining interest in pharmaceuticals as well as in other fields as a regular characterization technique. In pharmaceuticals HSM is used to support differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA) observations and to detect small changes in the sample that may be missed by DSC and TGA during a thermal experiment. Study of various physical and chemical properties such sample morphology, crystalline nature, polymorphism, desolvation, miscibility, melting, solid state transitions and incompatibility between various pharmaceutical compounds can be carried out using HSM. HSM is also widely used to screen cocrystals, excipients and polymers for solid dispersions. With the advancements in research methodologies, it is now possible to use HSM in conjunction with other characterization techniques such as Fourier transform infrared spectroscopy (FTIR), DSC, Raman spectroscopy, scanning electron microscopy (SEM) which may have additional benefits over traditional characterization techniques for rapid and comprehensive solid state characterization.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42649-020-00032-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4650886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
Light microscopic evidence of in vivo differentiation from the transplanted inferior turbinate-derived stem cell into the rod photoreceptor in degenerating retina of the mouse 移植的下鼻甲来源的干细胞在小鼠退化视网膜中向杆状光感受器分化的光镜证据
Applied Microscopy Pub Date : 2020-06-03 DOI: 10.1186/s42649-020-00031-w
Yong Soo Park, Yeonji Kim, Sung Won Kim, In-Beom Kim
{"title":"Light microscopic evidence of in vivo differentiation from the transplanted inferior turbinate-derived stem cell into the rod photoreceptor in degenerating retina of the mouse","authors":"Yong Soo Park,&nbsp;Yeonji Kim,&nbsp;Sung Won Kim,&nbsp;In-Beom Kim","doi":"10.1186/s42649-020-00031-w","DOIUrl":"https://doi.org/10.1186/s42649-020-00031-w","url":null,"abstract":"<p>The human turbinate-derived mesenchymal stem cells (hTMSCs), which were DiI-labeled and transplanted into the subretinal space in degenerating mouse retina, were observed in retinal vertical sections processed for rhodopsin (a marker for rod photoreceptor) by confocal microscope with differential interference contrast (DIC) filters. The images clearly demonstrated that DiI-labeled hTMSCs have rhodopsin-immunoreactive appendages, indicating differentiation of transplanted hTMSC into rod photoreceptor. Conclusively, the finding suggests therapeutic potential of hTMSCs in retinal degeneration.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42649-020-00031-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4127636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methanol fixation for scanning electron microscopy of plants 植物扫描电镜甲醇固定
Applied Microscopy Pub Date : 2020-05-25 DOI: 10.1186/s42649-020-00028-5
Ki Woo Kim
{"title":"Methanol fixation for scanning electron microscopy of plants","authors":"Ki Woo Kim","doi":"10.1186/s42649-020-00028-5","DOIUrl":"https://doi.org/10.1186/s42649-020-00028-5","url":null,"abstract":"<p>Plant specimens for scanning electron microscopy (SEM) are commonly treated using standard protocols. Conventional fixatives consist of toxic chemicals such as glutaraldehyde, paraformaldehyde, and osmium tetroxide. In 1996, methanol fixation was reported as a rapid alternative to the standard protocols. If specimens are immersed in methanol for 30?s or longer and critical-point dried, they appear to be comparable in preservation quality to those treated with the chemical fixatives. A modified version that consists of methanol fixation and ethanol dehydration was effective at preserving the tissue morphology and dimensions. These solvent-based fixation and dehydration protocols are regarded as rapid and simple alternatives to standard protocols for SEM of plants.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42649-020-00028-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4978509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Fine structure of the cardiac muscle cells in the orb-web spider Nephila clavata 圆网蜘蛛心肌细胞的精细结构
Applied Microscopy Pub Date : 2020-05-14 DOI: 10.1186/s42649-020-00030-x
Yan Sun, Hyo-Jeong Kim, Myung-Jin Moon
{"title":"Fine structure of the cardiac muscle cells in the orb-web spider Nephila clavata","authors":"Yan Sun,&nbsp;Hyo-Jeong Kim,&nbsp;Myung-Jin Moon","doi":"10.1186/s42649-020-00030-x","DOIUrl":"https://doi.org/10.1186/s42649-020-00030-x","url":null,"abstract":"<p>The fine structural characteristics of cardiac muscle cells and its myofibril organization in the orb web spider <i>N. clavata</i> were examined by transmission electron microscopy. Although myofibril striations are not remarkable as those of skeletal muscles, muscle fibers contain multiple myofibrils, abundant mitochondria, extensive sarcoplasmic reticulum and transverse tubules (T-tubules). Myofibrils are divided into distinct sarcomeres defined by Z-lines with average length of 2.0?μm, but the distinction between the A-band and the I-bands is not clear due to uniform striations over the length of the sarcomeres. Dyadic junction which consisted of a single T-tubule paired with a terminal cisterna of the sarcoplasmic reticulum is found mainly at the A-I level of sarcomere. Each cell is arranged to form multiple connections with neighboring cells through the intercalated discs. These specialized junctions include three types of intercellular junctions: gap junctions, fascia adherens and desmosomes for heart function. Our transmission electron microscopy (TEM) observations clearly show that spider’s cardiac muscle contraction is controlled by neurogenic rather than myogenic mechanism since each cardiac muscle fiber is innervated by a branch of motor neuron through neuromuscular junctions.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42649-020-00030-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4583745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Comparative study on the specimen thickness measurement using EELS and CBED methods EELS法与CBED法测量试件厚度的对比研究
Applied Microscopy Pub Date : 2020-05-12 DOI: 10.1186/s42649-020-00029-4
Yoon-Uk Heo
{"title":"Comparative study on the specimen thickness measurement using EELS and CBED methods","authors":"Yoon-Uk Heo","doi":"10.1186/s42649-020-00029-4","DOIUrl":"https://doi.org/10.1186/s42649-020-00029-4","url":null,"abstract":"<p>Two thickness measurement methods using an electron energy loss spectroscopy (EELS) and 10a convergent beam electron diffraction (CBED) were compared in an Fe-18Mn-0.7C alloy. The thin foil specimen was firstly tilted to satisfy 10a two-beam condition. Low loss spectra of EELS and CBED patterns were acquired in scanning transmission electron microscopy (STEM) and TEM-CBED modes under the two-beam condition. The log-ratio method was used for measuring the thin foil thickness. Kossel-M?llenstedt (K-M) fringe of the <span>( mathbf{13}overline{mathbf{1}} )</span> diffracted disk of austenite was analyzed to evaluate the thickness. The results prove the good coherency between both methods in the thickness range of 72?~?113?nm with a difference of less than 5%.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42649-020-00029-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4507294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Differential synapse density between Purkinje cell dendritic spine and parallel fiber varicosity in the rat cerebellum among the phylogenic lobules 大鼠小脑系统发育小叶中浦肯野细胞树突棘与平行纤维静脉曲张突触密度的差异
Applied Microscopy Pub Date : 2020-02-27 DOI: 10.1186/s42649-020-00027-6
Hyun-Wook Kim, Seung Hak Oh, Se Jeong Lee, Ji eun Na, Im Joo Rhyu
{"title":"Differential synapse density between Purkinje cell dendritic spine and parallel fiber varicosity in the rat cerebellum among the phylogenic lobules","authors":"Hyun-Wook Kim,&nbsp;Seung Hak Oh,&nbsp;Se Jeong Lee,&nbsp;Ji eun Na,&nbsp;Im Joo Rhyu","doi":"10.1186/s42649-020-00027-6","DOIUrl":"https://doi.org/10.1186/s42649-020-00027-6","url":null,"abstract":"<p>The cerebellum is a region of the brain that plays an important role in motor control. It is classified phylogenetically into archicerebellum, paleocerebellum and neocerebellum. The Purkinje cells are lined in a row called Purkinje cell layer and it has a unique dendritic branches with many spines.</p><p>The previous study reported that there is a difference of synapse density according to the lobules based on large two-dimensional data. However, recent study with high voltage electron microscopy showed there was no differences in dendritic spine density of the Purkinje cell according to its phylogenetic lobule. We analyzed Purkinje cell density in the II, VI and X lobules by stereological modules and synaptic density was estimated by double disector based on Purkinje cell density in the molecular layer of each lobule.</p><p>The results showed that there was significant difference in the Purkinje cell density and synapse number according to their phylogenetic lobules. The number of Purkinje cell in a given volume was larger in the archicerebellum, but synapse density was higher in the neocerebellum.</p><p>These data suggest that cellular and synaptic organization of the Purkinje cell is different according to their phylogenetic background.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42649-020-00027-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5034762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Microstructural evolution of tantalum nitride thin films synthesized by inductively coupled plasma sputtering 电感耦合等离子溅射制备氮化钽薄膜的微观结构演变
Applied Microscopy Pub Date : 2020-02-27 DOI: 10.1186/s42649-020-00026-7
Sung-Il Baik, Young-Woon Kim
{"title":"Microstructural evolution of tantalum nitride thin films synthesized by inductively coupled plasma sputtering","authors":"Sung-Il Baik,&nbsp;Young-Woon Kim","doi":"10.1186/s42649-020-00026-7","DOIUrl":"https://doi.org/10.1186/s42649-020-00026-7","url":null,"abstract":"<p>Tantalum nitride (TaN<sub>x</sub>) thin films were grown utilizing an inductively coupled plasma (ICP) assisted direct current (DC) sputtering, and 20–100% improved microhardness values were obtained. The detailed microstructural changes of the TaN<sub>x</sub> films were characterized utilizing transmission electron microscopy (TEM), as a function of nitrogen gas fraction and ICP power. As nitrogen gas fraction increases?from 0.05 to 0.15, the TaN<sub>x</sub> phase evolves from body-centered-cubic (b.c.c.) TaN<sub>0.1</sub>, to face-centered-cubic (f.c.c.) δ-TaN, to hexagonal-close-packing (h.c.p.) ε-TaN phase. By increasing ICP power from 100?W to 400?W, the f.c.c. δ- TaN phase becomes the main phase in all nitrogen fractions investigated. The higher ICP power enhances the mobility of Ta and N ions, which stabilizes the δ-TaN phase like a high-temperature regime and removes the micro-voids between the columnar grains in the TaN<sub>x</sub> film. The dense δ-TaN structure with reduced columnar grains and micro-voids increases the strength of the TaN<sub>x</sub> film.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42649-020-00026-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5035768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Microscopic analysis of metal matrix composites containing carbon Nanomaterials 含碳纳米材料金属基复合材料的微观分析
Applied Microscopy Pub Date : 2020-02-10 DOI: 10.1186/s42649-019-0024-2
Daeyoung Kim, Hye Jung Chang, Hyunjoo Choi
{"title":"Microscopic analysis of metal matrix composites containing carbon Nanomaterials","authors":"Daeyoung Kim,&nbsp;Hye Jung Chang,&nbsp;Hyunjoo Choi","doi":"10.1186/s42649-019-0024-2","DOIUrl":"https://doi.org/10.1186/s42649-019-0024-2","url":null,"abstract":"<p>Metallic matrix composites reinforced with carbon nanomaterials continue to attract interest because of their excellent mechanical, thermal, and electrical properties. However, two critical issues have limited their commercialization. Uniform distribution of carbon nanomaterials in metallic matrices is difficult, and the interfaces between the nanomaterials and matrices are weak. Microscope-based analysis was recently used to quantitatively examine these microstructural features and investigate their contributions to the composites’ mechanical, thermal, and electrical properties. The impacts of the microstructure on these properties are discussed in the first section of this review. In the second section, the various microscopic techniques used to study the distribution of carbon nanomaterials in metallic matrices and their interfaces are described.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42649-019-0024-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4417905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Publisher Correction to: Applied Microscopy 出版商更正:应用显微镜
Applied Microscopy Pub Date : 2020-02-05 DOI: 10.1186/s42649-020-0025-1
Applied Microscopy
{"title":"Publisher Correction to: Applied Microscopy","authors":"Applied Microscopy","doi":"10.1186/s42649-020-0025-1","DOIUrl":"https://doi.org/10.1186/s42649-020-0025-1","url":null,"abstract":"","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42649-020-0025-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4207052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introduction to the standard reference data of electron energy loss spectra and their database: eel.geri.re.kr 电子能量损失谱的标准参考数据及其数据库:eele .geri.re.kr
Applied Microscopy Pub Date : 2019-12-31 DOI: 10.1186/s42649-019-0015-3
Jeong Eun Chae, Ji-Soo Kim, Sang-Yeol Nam, Min Su Kim, Jucheol Park
{"title":"Introduction to the standard reference data of electron energy loss spectra and their database: eel.geri.re.kr","authors":"Jeong Eun Chae,&nbsp;Ji-Soo Kim,&nbsp;Sang-Yeol Nam,&nbsp;Min Su Kim,&nbsp;Jucheol Park","doi":"10.1186/s42649-019-0015-3","DOIUrl":"https://doi.org/10.1186/s42649-019-0015-3","url":null,"abstract":"<p>Electron energy loss spectroscopy (EELS) is an analytical technique that can provide the structural, physical and chemical information of materials. The EELS spectra can be obtained by combining with TEM at sub-nanometer spatial resolution. However, EELS spectral information can’t be obtained easily because in order to interpret EELS spectra, we need to refer to and/or compare many reference data with each other. And in addition to that, we should consider the different experimental variables used to produce each data. Therefore, reliable and easily interpretable EELS standard reference data are needed.</p><p>Our Electron Energy Loss Data Center (EELDC) has been designated as National Standard Electron Energy Loss Data Center No. 34 to develop EELS standard reference (SR) data and to play a role in dissemination and diffusion of the SR data to users. EELDC has developed and collected EEL SR data for the materials required by major industries and has a total of 82 EEL SR data. Also, we have created an online platform that provides a one-stop-place to help users interpret quickly EELS spectra and get various spectral information. In this paper, we introduce EEL SR data, the homepage of EELDC and how to use them.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42649-019-0015-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5172509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信