Applied Microscopy最新文献

筛选
英文 中文
Depth-dependent EBIC microscopy of radial-junction Si micropillar arrays 径向结硅微柱阵列的深度依赖EBIC显微镜
Applied Microscopy Pub Date : 2020-09-03 DOI: 10.1186/s42649-020-00037-4
Kaden M. Powell, Heayoung P. Yoon
{"title":"Depth-dependent EBIC microscopy of radial-junction Si micropillar arrays","authors":"Kaden M. Powell,&nbsp;Heayoung P. Yoon","doi":"10.1186/s42649-020-00037-4","DOIUrl":"https://doi.org/10.1186/s42649-020-00037-4","url":null,"abstract":"<p>Recent advances in fabrication have enabled radial-junction architectures for cost-effective and high-performance optoelectronic devices. Unlike a planar PN junction, a radial-junction geometry maximizes the optical interaction in the three-dimensional (3D) structures, while effectively extracting the generated carriers via the conformal PN junction. In this paper, we report characterizations of radial PN junctions that consist of <i>p</i>-type Si micropillars created by deep reactive-ion etching (DRIE) and an <i>n</i>-type layer formed by phosphorus gas diffusion. We use electron-beam induced current (EBIC) microscopy to access the 3D junction profile from the sidewall of the pillars. Our EBIC images reveal uniform PN junctions conformally constructed on the 3D pillar array. Based on Monte-Carlo simulations and EBIC modeling, we estimate local carrier separation/collection efficiency that reflects the quality of the PN junction. We find the EBIC efficiency of the pillar array increases with the incident electron beam energy, consistent with the EBIC behaviors observed in a high-quality planar PN junction. The magnitude of the EBIC efficiency of our pillar array is about 70% at 10?kV, slightly lower than that of the planar device (≈ 81%). We suggest that this reduction could be attributed to the unpassivated pillar surface and the unintended recombination centers in the pillar cores introduced during the DRIE processes. Our results support that the depth-dependent EBIC approach is ideally suitable for evaluating PN junctions formed on micro/nanostructured semiconductors with various geometry.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42649-020-00037-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4145671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Fine structure of the silk spinning system in the caddisworm, Hydatophylax nigrovittatus (Trichoptera: Limnephilidae) 黑头棘球虫丝系统的精细结构(毛翅目:织丝虫科)
Applied Microscopy Pub Date : 2020-08-06 DOI: 10.1186/s42649-020-00036-5
Hyo-Jeong Kim, Yan Sun, Myung-Jin Moon
{"title":"Fine structure of the silk spinning system in the caddisworm, Hydatophylax nigrovittatus (Trichoptera: Limnephilidae)","authors":"Hyo-Jeong Kim,&nbsp;Yan Sun,&nbsp;Myung-Jin Moon","doi":"10.1186/s42649-020-00036-5","DOIUrl":"https://doi.org/10.1186/s42649-020-00036-5","url":null,"abstract":"<p>Silk is produced by a variety of insects, but only silk made by terrestrial arthropods has been examined in detail. To fill the gap, this study was designed to understand the silk spinning system of aquatic insect. The larvae of caddis flies, <i>Hydatophylax nigrovittatus</i> produce silk through a pair of labial silk glands and use raw silk to protect themselves in the aquatic environment. The result of this study clearly shows that although silk fibers are made under aquatic conditions, the cellular silk production system is quite similar to that of terrestrial arthropods. Typically, silk production in caddisworm has been achieved by two independent processes in the silk glands. This includes the synthesis of silk fibroin in the posterior region, the production of adhesive glycoproteins in the anterior region, which are ultimately accumulated into functional silk dope and converted to a silk ribbon coated with gluey substances. At the cellular level, each substance of fibroin and glycoprotein is specifically synthesized at different locations, and then transported from the rough ER to the Golgi apparatus as transport vesicles, respectively. Thereafter, the secretory vesicles gradually increase in size by vesicular fusion, forming larger secretory granules containing specific proteins. It was found that these granules eventually migrate to the apical membrane and are exocytosed into the lumen by a mechanism of merocrine secretion.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42649-020-00036-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4238184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Replacing critical point drying with a low-cost chemical drying provides comparable surface image quality of glandular trichomes from leaves of Millingtonia hortensis L. f. in scanning electron micrograph 用低成本的化学干燥法代替临界点干燥法,可以获得与之相当的扫描电镜图像质量
Applied Microscopy Pub Date : 2020-07-17 DOI: 10.1186/s42649-020-00035-6
Raktim Bhattacharya, Sulagna Saha, Olga Kostina, Lyudmila Muravnik, Adinpunya Mitra
{"title":"Replacing critical point drying with a low-cost chemical drying provides comparable surface image quality of glandular trichomes from leaves of Millingtonia hortensis L. f. in scanning electron micrograph","authors":"Raktim Bhattacharya,&nbsp;Sulagna Saha,&nbsp;Olga Kostina,&nbsp;Lyudmila Muravnik,&nbsp;Adinpunya Mitra","doi":"10.1186/s42649-020-00035-6","DOIUrl":"https://doi.org/10.1186/s42649-020-00035-6","url":null,"abstract":"<p>Sample preparation including dehydration and drying of samples is the most intricate part of scanning electron microscopy. Most current sample preparation protocols use critical-point drying with liquid carbon dioxide. Very few studies have reported samples that were dried using chemical reagents. In this study, we used hexamethyldisilazane, a chemical drying reagent, to prepare plant samples. As glandular trichomes are among the most fragile and sensitive surface structures found on plants, we used <i>Millingtonia hortensis</i> leaf samples as our study materials because they contain abundant glandular trichomes. The results obtained using this new method are identical to those produced via critical-point drying.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7818294/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4685891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Double staining method for array tomography using scanning electron microscopy 扫描电子显微镜阵列层析成像的双重染色方法
Applied Microscopy Pub Date : 2020-06-22 DOI: 10.1186/s42649-020-00033-8
Eunjin Kim, Jiyoung Lee, Seulgi Noh, Ohkyung Kwon, Ji Young Mun
{"title":"Double staining method for array tomography using scanning electron microscopy","authors":"Eunjin Kim,&nbsp;Jiyoung Lee,&nbsp;Seulgi Noh,&nbsp;Ohkyung Kwon,&nbsp;Ji Young Mun","doi":"10.1186/s42649-020-00033-8","DOIUrl":"https://doi.org/10.1186/s42649-020-00033-8","url":null,"abstract":"<p>Scanning electron microscopy (SEM) plays a central role in analyzing structures by imaging a large area of brain tissue at nanometer scales. A vast amount of data in the large area are required to study structural changes of cellular organelles in a specific cell, such as neurons, astrocytes, oligodendrocytes, and microglia among brain tissue, at sufficient resolution. Array tomography is a useful method for large-area imaging, and the osmium-thiocarbohydrazide-osmium (OTO) and ferrocyanide-reduced osmium methods are commonly used to enhance membrane contrast.</p><p>Because many samples prepared using the conventional technique without en bloc staining are considered inadequate for array tomography, we suggested an alternative technique using post-staining conventional samples and compared the advantages.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42649-020-00033-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4863635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Ultrastructure of the fertilized egg envelopes in Ancistrus cirrhosus, Loricariidae, Teleostei 硬腹蛇、蠓科、铁骨鱼受精卵包膜的超微结构
Applied Microscopy Pub Date : 2020-06-17 DOI: 10.1186/s42649-020-00034-7
Dong Heui Kim
{"title":"Ultrastructure of the fertilized egg envelopes in Ancistrus cirrhosus, Loricariidae, Teleostei","authors":"Dong Heui Kim","doi":"10.1186/s42649-020-00034-7","DOIUrl":"https://doi.org/10.1186/s42649-020-00034-7","url":null,"abstract":"<p>We examined the morphology of fertilized egg and ultrastructures of fertilized egg envelopes of <i>Ancistrus cirrhosus</i> belong to Loricariidae using light and electron microscopes. The fertilized eggs formed a mass on the spawning place and were yellowish, spherical, non-transparent, demersal, adhesive, and a narrow perivitelline space. But, the adhesiveness of fertilized eggs was disappeared after spawning excluding contact parts. The micropyle with funnel shape was surrounded by 15–19 furrow lines of egg envelope in a spoke-like pattern. The outer surface of egg envelope has smooth side and inner surface of egg envelope was rough with grooves. Also, the total thickness of the fertilized egg envelope was about 32.58?±?0.85?μm (<i>n</i>?=?20), and the fertilized egg envelope consisted of three layers, an outer adhesive electron-dense layer, a middle layer with low electron density and an inner electron-dense layer with grooves in counter structure from other most teleost. Collectively, these morphological characteristics and adhesive property of fertilized egg, and ultrastructures of micropyle, outer surface, and section of fertilized egg envelope are showed species specificity.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42649-020-00034-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4687014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Hot stage microscopy and its applications in pharmaceutical characterization 热阶显微镜及其在药物表征中的应用
Applied Microscopy Pub Date : 2020-06-16 DOI: 10.1186/s42649-020-00032-9
Arun Kumar, Pritam Singh, Arun Nanda
{"title":"Hot stage microscopy and its applications in pharmaceutical characterization","authors":"Arun Kumar,&nbsp;Pritam Singh,&nbsp;Arun Nanda","doi":"10.1186/s42649-020-00032-9","DOIUrl":"https://doi.org/10.1186/s42649-020-00032-9","url":null,"abstract":"<p>Hot stage microscopy (HSM) is a thermal analysis technique that combines the best properties of thermal analysis and microscopy. HSM is rapidly gaining interest in pharmaceuticals as well as in other fields as a regular characterization technique. In pharmaceuticals HSM is used to support differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA) observations and to detect small changes in the sample that may be missed by DSC and TGA during a thermal experiment. Study of various physical and chemical properties such sample morphology, crystalline nature, polymorphism, desolvation, miscibility, melting, solid state transitions and incompatibility between various pharmaceutical compounds can be carried out using HSM. HSM is also widely used to screen cocrystals, excipients and polymers for solid dispersions. With the advancements in research methodologies, it is now possible to use HSM in conjunction with other characterization techniques such as Fourier transform infrared spectroscopy (FTIR), DSC, Raman spectroscopy, scanning electron microscopy (SEM) which may have additional benefits over traditional characterization techniques for rapid and comprehensive solid state characterization.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42649-020-00032-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4650886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
Light microscopic evidence of in vivo differentiation from the transplanted inferior turbinate-derived stem cell into the rod photoreceptor in degenerating retina of the mouse 移植的下鼻甲来源的干细胞在小鼠退化视网膜中向杆状光感受器分化的光镜证据
Applied Microscopy Pub Date : 2020-06-03 DOI: 10.1186/s42649-020-00031-w
Yong Soo Park, Yeonji Kim, Sung Won Kim, In-Beom Kim
{"title":"Light microscopic evidence of in vivo differentiation from the transplanted inferior turbinate-derived stem cell into the rod photoreceptor in degenerating retina of the mouse","authors":"Yong Soo Park,&nbsp;Yeonji Kim,&nbsp;Sung Won Kim,&nbsp;In-Beom Kim","doi":"10.1186/s42649-020-00031-w","DOIUrl":"https://doi.org/10.1186/s42649-020-00031-w","url":null,"abstract":"<p>The human turbinate-derived mesenchymal stem cells (hTMSCs), which were DiI-labeled and transplanted into the subretinal space in degenerating mouse retina, were observed in retinal vertical sections processed for rhodopsin (a marker for rod photoreceptor) by confocal microscope with differential interference contrast (DIC) filters. The images clearly demonstrated that DiI-labeled hTMSCs have rhodopsin-immunoreactive appendages, indicating differentiation of transplanted hTMSC into rod photoreceptor. Conclusively, the finding suggests therapeutic potential of hTMSCs in retinal degeneration.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42649-020-00031-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4127636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methanol fixation for scanning electron microscopy of plants 植物扫描电镜甲醇固定
Applied Microscopy Pub Date : 2020-05-25 DOI: 10.1186/s42649-020-00028-5
Ki Woo Kim
{"title":"Methanol fixation for scanning electron microscopy of plants","authors":"Ki Woo Kim","doi":"10.1186/s42649-020-00028-5","DOIUrl":"https://doi.org/10.1186/s42649-020-00028-5","url":null,"abstract":"<p>Plant specimens for scanning electron microscopy (SEM) are commonly treated using standard protocols. Conventional fixatives consist of toxic chemicals such as glutaraldehyde, paraformaldehyde, and osmium tetroxide. In 1996, methanol fixation was reported as a rapid alternative to the standard protocols. If specimens are immersed in methanol for 30?s or longer and critical-point dried, they appear to be comparable in preservation quality to those treated with the chemical fixatives. A modified version that consists of methanol fixation and ethanol dehydration was effective at preserving the tissue morphology and dimensions. These solvent-based fixation and dehydration protocols are regarded as rapid and simple alternatives to standard protocols for SEM of plants.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42649-020-00028-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4978509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Fine structure of the cardiac muscle cells in the orb-web spider Nephila clavata 圆网蜘蛛心肌细胞的精细结构
Applied Microscopy Pub Date : 2020-05-14 DOI: 10.1186/s42649-020-00030-x
Yan Sun, Hyo-Jeong Kim, Myung-Jin Moon
{"title":"Fine structure of the cardiac muscle cells in the orb-web spider Nephila clavata","authors":"Yan Sun,&nbsp;Hyo-Jeong Kim,&nbsp;Myung-Jin Moon","doi":"10.1186/s42649-020-00030-x","DOIUrl":"https://doi.org/10.1186/s42649-020-00030-x","url":null,"abstract":"<p>The fine structural characteristics of cardiac muscle cells and its myofibril organization in the orb web spider <i>N. clavata</i> were examined by transmission electron microscopy. Although myofibril striations are not remarkable as those of skeletal muscles, muscle fibers contain multiple myofibrils, abundant mitochondria, extensive sarcoplasmic reticulum and transverse tubules (T-tubules). Myofibrils are divided into distinct sarcomeres defined by Z-lines with average length of 2.0?μm, but the distinction between the A-band and the I-bands is not clear due to uniform striations over the length of the sarcomeres. Dyadic junction which consisted of a single T-tubule paired with a terminal cisterna of the sarcoplasmic reticulum is found mainly at the A-I level of sarcomere. Each cell is arranged to form multiple connections with neighboring cells through the intercalated discs. These specialized junctions include three types of intercellular junctions: gap junctions, fascia adherens and desmosomes for heart function. Our transmission electron microscopy (TEM) observations clearly show that spider’s cardiac muscle contraction is controlled by neurogenic rather than myogenic mechanism since each cardiac muscle fiber is innervated by a branch of motor neuron through neuromuscular junctions.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42649-020-00030-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4583745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Comparative study on the specimen thickness measurement using EELS and CBED methods EELS法与CBED法测量试件厚度的对比研究
Applied Microscopy Pub Date : 2020-05-12 DOI: 10.1186/s42649-020-00029-4
Yoon-Uk Heo
{"title":"Comparative study on the specimen thickness measurement using EELS and CBED methods","authors":"Yoon-Uk Heo","doi":"10.1186/s42649-020-00029-4","DOIUrl":"https://doi.org/10.1186/s42649-020-00029-4","url":null,"abstract":"<p>Two thickness measurement methods using an electron energy loss spectroscopy (EELS) and 10a convergent beam electron diffraction (CBED) were compared in an Fe-18Mn-0.7C alloy. The thin foil specimen was firstly tilted to satisfy 10a two-beam condition. Low loss spectra of EELS and CBED patterns were acquired in scanning transmission electron microscopy (STEM) and TEM-CBED modes under the two-beam condition. The log-ratio method was used for measuring the thin foil thickness. Kossel-M?llenstedt (K-M) fringe of the <span>( mathbf{13}overline{mathbf{1}} )</span> diffracted disk of austenite was analyzed to evaluate the thickness. The results prove the good coherency between both methods in the thickness range of 72?~?113?nm with a difference of less than 5%.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42649-020-00029-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4507294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信