Noise2Atom:扫描透射电子显微镜图像的无监督去噪

Q3 Immunology and Microbiology
Feng Wang, Trond R. Henninen, Debora Keller, Rolf Erni
{"title":"Noise2Atom:扫描透射电子显微镜图像的无监督去噪","authors":"Feng Wang,&nbsp;Trond R. Henninen,&nbsp;Debora Keller,&nbsp;Rolf Erni","doi":"10.1186/s42649-020-00041-8","DOIUrl":null,"url":null,"abstract":"<p>We propose an effective deep learning model to denoise scanning transmission electron microscopy (STEM) image series, named Noise2Atom, to map images from a source domain <span>\\(\\mathcal {S}\\)</span> to a target domain <span>\\(\\mathcal {C}\\)</span>, where <span>\\(\\mathcal {S}\\)</span> is for our noisy experimental dataset, and <span>\\(\\mathcal {C}\\)</span> is for the desired clear atomic images. Noise2Atom uses two external networks to apply additional constraints from the domain knowledge. This model requires no signal prior, no noise model estimation, and no paired training images. The only assumption is that the inputs are acquired with identical experimental configurations. To evaluate the restoration performance of our model, as it is impossible to obtain ground truth for our experimental dataset, we propose consecutive structural similarity (CSS) for image quality assessment, based on the fact that the structures remain much the same as the previous frame(s) within small scan intervals. We demonstrate the superiority of our model by providing evaluation in terms of CSS and visual quality on different experimental datasets.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42649-020-00041-8","citationCount":"28","resultStr":"{\"title\":\"Noise2Atom: unsupervised denoising for scanning transmission electron microscopy images\",\"authors\":\"Feng Wang,&nbsp;Trond R. Henninen,&nbsp;Debora Keller,&nbsp;Rolf Erni\",\"doi\":\"10.1186/s42649-020-00041-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose an effective deep learning model to denoise scanning transmission electron microscopy (STEM) image series, named Noise2Atom, to map images from a source domain <span>\\\\(\\\\mathcal {S}\\\\)</span> to a target domain <span>\\\\(\\\\mathcal {C}\\\\)</span>, where <span>\\\\(\\\\mathcal {S}\\\\)</span> is for our noisy experimental dataset, and <span>\\\\(\\\\mathcal {C}\\\\)</span> is for the desired clear atomic images. Noise2Atom uses two external networks to apply additional constraints from the domain knowledge. This model requires no signal prior, no noise model estimation, and no paired training images. The only assumption is that the inputs are acquired with identical experimental configurations. To evaluate the restoration performance of our model, as it is impossible to obtain ground truth for our experimental dataset, we propose consecutive structural similarity (CSS) for image quality assessment, based on the fact that the structures remain much the same as the previous frame(s) within small scan intervals. We demonstrate the superiority of our model by providing evaluation in terms of CSS and visual quality on different experimental datasets.</p>\",\"PeriodicalId\":470,\"journal\":{\"name\":\"Applied Microscopy\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s42649-020-00041-8\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Microscopy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42649-020-00041-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microscopy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42649-020-00041-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 28

摘要

我们提出了一个有效的深度学习模型来对扫描透射电子显微镜(STEM)图像序列进行降噪,名为Noise2Atom,将图像从源域\(\mathcal {S}\)映射到目标域\(\mathcal {C}\),其中\(\mathcal {S}\)用于我们的噪声实验数据集,\(\mathcal {C}\)用于所需的清晰原子图像。Noise2Atom使用两个外部网络来应用来自领域知识的附加约束。该模型不需要信号先验,不需要噪声模型估计,不需要成对训练图像。唯一的假设是输入是用相同的实验配置获得的。为了评估我们的模型的恢复性能,因为我们的实验数据集不可能获得地面真实值,我们提出了连续结构相似性(CSS)用于图像质量评估,基于这样一个事实,即结构在很小的扫描间隔内与前一帧保持大致相同。我们通过在不同的实验数据集上提供CSS和视觉质量方面的评估来证明我们模型的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Noise2Atom: unsupervised denoising for scanning transmission electron microscopy images

Noise2Atom: unsupervised denoising for scanning transmission electron microscopy images

We propose an effective deep learning model to denoise scanning transmission electron microscopy (STEM) image series, named Noise2Atom, to map images from a source domain \(\mathcal {S}\) to a target domain \(\mathcal {C}\), where \(\mathcal {S}\) is for our noisy experimental dataset, and \(\mathcal {C}\) is for the desired clear atomic images. Noise2Atom uses two external networks to apply additional constraints from the domain knowledge. This model requires no signal prior, no noise model estimation, and no paired training images. The only assumption is that the inputs are acquired with identical experimental configurations. To evaluate the restoration performance of our model, as it is impossible to obtain ground truth for our experimental dataset, we propose consecutive structural similarity (CSS) for image quality assessment, based on the fact that the structures remain much the same as the previous frame(s) within small scan intervals. We demonstrate the superiority of our model by providing evaluation in terms of CSS and visual quality on different experimental datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Microscopy
Applied Microscopy Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
3.40
自引率
0.00%
发文量
10
审稿时长
10 weeks
期刊介绍: Applied Microscopy is a peer-reviewed journal sponsored by the Korean Society of Microscopy. The journal covers all the interdisciplinary fields of technological developments in new microscopy methods and instrumentation and their applications to biological or materials science for determining structure and chemistry. ISSN: 22875123, 22874445.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信