G. Romano, Y. N. Rao, C. Liu, K. B. Katnam, Z. Zou, P. Potluri
{"title":"On the Micro-Stress Fields in Fibre-Hybrid Polymer Composite Laminae with Periodic Microstructure Under Transverse Tension and Transverse Shear Loading","authors":"G. Romano, Y. N. Rao, C. Liu, K. B. Katnam, Z. Zou, P. Potluri","doi":"10.1007/s10443-024-10213-4","DOIUrl":"10.1007/s10443-024-10213-4","url":null,"abstract":"<div><p>This paper investigates the effect of intra-laminar fibre hybridisation, <i>i.e.,</i> primary and secondary fibres within a matrix, on the homogenised properties and micro-stress fields in uni-directional polymer composite laminae. The study is focused on S-glass/epoxy laminae which are hybridised with secondary fibres (<i>e.g.,</i> polypropylene). Two-dimensional repeating unit cells (2D RUCs) with periodic microstructures are developed to conduct the micro-mechanical analyses under transverse tensile and transverse shear loading conditions. Uni-directional fibre-hybrid S-glass/epoxy laminae with different secondary fibres are studied by varying (a) the periodic microstructure and (b) the material properties of the constituent fibres to assess the effect of such geometric and material variations on the homogenised elastic lamina properties and intra-lamina micro-stress fields. The results show that intra-laminar fibre hybridisation significantly affects the elastic lamina properties and micro-stress fields. Notably, the presence of the secondary fibres significantly increases or reduces the stress fields in the matrix and at the fibre-matrix interfaces (i.e. normal and shears stress components)–depending on the microstructure and the stiffness of the secondary fibres–which could be explored to manipulate the damage modes and thus energy dissipation mechanisms. </p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"31 6","pages":"1967 - 1989"},"PeriodicalIF":2.3,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10443-024-10213-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140098700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xuda Qin, Gongbo Feng, Xianming Meng, Sai Zhang, Shipeng Li, Hao Li
{"title":"The Investigation of Preload Relaxation Behavior of CFRP Bolted Joints Under Thermal-Oxygen Environment: Modeling and Experiments","authors":"Xuda Qin, Gongbo Feng, Xianming Meng, Sai Zhang, Shipeng Li, Hao Li","doi":"10.1007/s10443-024-10214-3","DOIUrl":"10.1007/s10443-024-10214-3","url":null,"abstract":"<div><p>In this paper, the effects of interference-fit sizes and service environment temperature on the preload and relaxation of CFRP bolted joints are investigated based on an ultrasonic monitoring method. Specimens of different interference-fit sizes were subjected to insertion, preloading and preloading force monitoring for up to 200 h. To describe the preloading relaxation response of CFRP bolted joints, a comprehensive relaxation mechanics model is proposed. Experimental results demonstrate that this model accurately describe the variations in bolted preloading force under interference-fit conditions and thermal-oxygen environments. During the preloading process, a portion the axial force in interference-fit bolted joints is dissipated by interfacial frictional force and the magnitude of the frictional force is influenced by the interference-fit sizes. The interference-fit will lead to a tightly coupled interface, causing interface friction between the bolt-shank and the joint-holes, which can lead to a weakening transformation ability from tightening torque to axial force. Compared to clearance-fit condition, interference-fit can suppress the preloading relaxation effect of CFRP bolted joints to a certain extent. With an increase in interference-fit percentage (from 0% to 1.2%), the preloading relaxation coefficient rises from 94.4% to 95.7%. The additional interfacial friction effectively suppresses the creep deformation of composites. However, with an increase in the service temperature, the relaxation behavior of preloading forces in CFRP bolted joint significantly intensifies. As the environmental temperature rises from 25 ℃ to 150 ℃, the preloading relaxation coefficient decreases from 95.0% to 79.8%. High-temperature environments can lead changes in the material properties of composite and interface friction characteristics, even potentially leading to damage.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"31 4","pages":"1323 - 1342"},"PeriodicalIF":2.3,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140057390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessment of Delamination Damage in Carbon Fibre Reinforced Polymer Composites with a Fastener Under Multiple Lightning Strike Conditions","authors":"Xiangyu Tian, Jinru Sun, Wei Sun, Xueling Yao, Xianchao Xu, Shu Li, Jingliang Chen","doi":"10.1007/s10443-024-10212-5","DOIUrl":"10.1007/s10443-024-10212-5","url":null,"abstract":"<div><p>Internal delamination damage in carbon fibre reinforced polymer (CFRP) composites occurs easily after a fastener is installed. To determine the internal delamination damage in CFRPs with a fastener under lightning strike conditions, an experiment was conducted with different lightning channel gaps, fastener diameters, and fitting conditions. On the basis of the experimental findings and the results of a coupled thermal–electrical simulation model, a circuit model for CFRPs with a fastener was established to explore the current path, delamination properties and internal damage in CFRP specimens. The factors influencing the correlations between the generation and development of internal delamination damage under multiple conditions were proposed to clarify the lightning damage mechanism of the CFRP composites. The results indicated that internal delamination damage was mainly caused by resin pyrolysis and pyrolysis gas expansion; in addition, the thermal–electrical coupling effect of the contact interface had a significant impact on the internal delamination damage. For example, at approximately 50 kA, the damage area of the specimen with a 6 mm diameter fastener was 28.5% smaller than that of the specimen with a 4 mm diameter fastener. This work provides a basis for understanding the propagation of delamination in CFRP composites with a fastener and for reducing the delamination damage under lightning strike environment.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"31 4","pages":"1155 - 1172"},"PeriodicalIF":2.3,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140034012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ming Cai, Jiwei Liu, Xian Zhang, Qihua Ma, Dazhong Wang, Geoffrey I. N. Waterhouse, Baozhong Sun
{"title":"Mechanical Stability of Carbon/Ramie Fiber Hybrid Composites Under Hygrothermal Aging","authors":"Ming Cai, Jiwei Liu, Xian Zhang, Qihua Ma, Dazhong Wang, Geoffrey I. N. Waterhouse, Baozhong Sun","doi":"10.1007/s10443-024-10211-6","DOIUrl":"https://doi.org/10.1007/s10443-024-10211-6","url":null,"abstract":"<p>Hybrid composites containing carbon fibers and ramie fibers in an epoxy polymer matrix were prepared (denoted as CRFRP), after which the composites were immersed in distilled water at three different temperatures (20, 40, and 60 °C) for a period up to 2 months. Water absorption tests and static (tensile and flexural) and dynamic (low-velocity impact) mechanical tests were then conducted on the hygrothermally-treated composites to explore their hydrothermal aging mechanism. Results show that water uptake by CRFRP composites was enhanced by increasing the hygrothermal treatment temperature or aging time, with the water uptake obeying a Fickian diffusion model. Hygrothermal aging decreased the tensile strength, tensile modulus, flexural strength and flexural modulus of the CRFRP composites, though enhanced the impact absorption energy since the ramie fibers had greater plasticity and deformability after aging. Based on the experimental findings, a plausible mechanism was developed for the hydrothermal aging of the hybrid composites. Importantly, CRFRP composites were lighter than carbon fiber-reinforced composites (CFRP), whilst offering similar all-round performance, suggesting CRFRP composites may be useful in applications where CFRP composites have traditionally been used. </p>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"80 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140034104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research on the Influence of Yarn Reduction on the Bending Performance of Three-dimensional Woven Composites","authors":"Chao Li, Haili Zhou, Yang Sun, Fangfang Sun, Zhiyan Liu, Jian Huang, Liquan Zhang, Chengming Yue, Qian Zhao, Shoufu Yu, Guangming Zhou","doi":"10.1007/s10443-024-10206-3","DOIUrl":"10.1007/s10443-024-10206-3","url":null,"abstract":"<div><p>The primary objective of this study is to conduct a comprehensive experimental investigation into the impact of yarn reduction on the damage mechanisms and progression of 3D woven composites under bending loads, utilizing a combination of micro-XCT and digital image correlation (DIC) techniques. Typical bending behaviors of 3D woven composites have been discussed through load–displacement curves combining camera photography techniques. The influence of yarn reduction on strain distribution during bending deformation can be obtained by utilizing DIC techniques. Additionally, the final failure mode analysis of three-dimensional woven composite materials was conducted using micro-XCT techniques.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"31 3","pages":"1069 - 1082"},"PeriodicalIF":2.3,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140001903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Massinissa Grabi, Ahmed Chellil, Samir Lecheb, Hocine Grabi, Abdelkader Nour
{"title":"Impact Behavior Analysis of Luffa/Epoxy Composites Under Low-Velocity Loading","authors":"Massinissa Grabi, Ahmed Chellil, Samir Lecheb, Hocine Grabi, Abdelkader Nour","doi":"10.1007/s10443-024-10209-0","DOIUrl":"https://doi.org/10.1007/s10443-024-10209-0","url":null,"abstract":"<p>Luffa cylindrical (LC) has an exceptionally multipartite architecture, a hierarchical and light structure, and a low density. Such a structure is potentially suitable to replace conventional porous-type composites for low-energy absorption and material reinforcement applications. This paper presents an experimental study of the impact behavior of four different luffa/epoxy composites, named (A), (B), (C), and (D) subjected to low-velocity impact (LVI) at energies ranging from barely visible impact damage (BVID) to perforation (5,15, and 20J). Acoustic emission (AE), scanning electron microscopy (SEM), and digital image correlation (DIC) were introduced to the indentation test to offer additional information on damage mechanisms and on strain and displacement fields since the LVI test has a short duration and real-time damage monitoring is not always achievable. The results showed that the values of the peak force of laminates (A), (B), and (D) are relatively lower compared to laminates (C). In the case of perforation impact energy (20J), the Coefficients of Restitution (CoR) of composites (A), (B), and (D) are equal to 0, which indicates that the nature of the impact is completely plastic, except for composite (C) had a value of 0.11, and a lower degree of damage at all impact energies. Composites (C) exhibit the highest impact resistance, followed by composites (A), while composites (D) display the highest energy absorption, followed by composites (B). Multivariable statistical analysis of the AE signals identified four classes of damage: matrix cracking, fiber-matrix debonding, delamination, and fiber breakage. The damage modes found by AE are well presented and proven by SEM analysis. The luffa fiber-reinforced composite has better impact properties than other natural fiber-reinforced composites.</p>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"27 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140002093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of a 3D Printing Method for Continuous Carbon Fiber-Reinforced Thermosetting Epoxy Composite","authors":"Haiguang Zhang, Dugang Li, Tinglong Huang, Qingxi Hu, Qixiang Jiang, Jinhe Wang","doi":"10.1007/s10443-024-10207-2","DOIUrl":"10.1007/s10443-024-10207-2","url":null,"abstract":"<div><p>A novel 3D printing method for continuous carbon fiber-reinforced thermosetting epoxy resin composites (CCFRTC) was proposed, including CCFRTC prepreg filament manufacturing, secondary impregnation, printing and curing stages. Through the addition of an impregnation stage before printing, this method ensures a close interface bond and uniform distribution of fibers and resin. After testing, the average tensile strength and tensile modulus of the uncured pre-impregnated continuous filaments were found to be 968 MPa and 58.6 GPa, respectively. Mechanical testing of the specimens revealed that the maximum tensile strength and flexural strength of the CCFRTC specimens reached 825 MPa and 557 MPa, with tensile and flexural modulus measuring 157 GPa and 185 GPa. Furthermore, scanning electron microscopy (SEM) examination of the cross-sections indicated a highly uniform impregnation of both the filaments and printed specimens. In conclusion, the method proposed in this study enables the preparation and printing of continuous fiber-reinforced thermosetting resin composite materials, addressing the issues of inadequate impregnation and poor interfacial bonding performance in continuous carbon fiber-reinforced thermosetting resin composite materials. These findings may broaden the potential applications of 3D printing CCFRTC in the aerospace, defense, and automotive industries.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"31 3","pages":"911 - 928"},"PeriodicalIF":2.3,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139946676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaodong Xu, Nathanael Leung, Urangua Jargalsaikhan, Evi Bongaers, Tan Sui
{"title":"Observation of Damage Initiation for Trans-laminar Fracture Using in situ Fast Synchrotron X-ray Radiography and ex situ X-ray Computed Tomography","authors":"Xiaodong Xu, Nathanael Leung, Urangua Jargalsaikhan, Evi Bongaers, Tan Sui","doi":"10.1007/s10443-024-10210-7","DOIUrl":"10.1007/s10443-024-10210-7","url":null,"abstract":"<div><p>Trans-laminar fracture is an important topic for engineering composites. In this study, trans-laminar fracture initiation in quasi-isotropic carbon/epoxy laminates made of non-crimp fabrics was examined using in situ fast synchrotron X-ray radiography and ex situ X-ray computed tomography. The maximum split lengths were measured by in situ radiography and were compared with the predicted values in a detailed FE model using cohesive elements. Ex situ computed tomography scans were also conducted to confirm that no fibre breakage occurs before the final load drop in the experiments. In situ and ex situ observations are complementary for the understanding of damage initiation.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"31 3","pages":"765 - 774"},"PeriodicalIF":2.3,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10443-024-10210-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139922877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Grete Steiner, Dominik Kuttner, Hans Lochner, Michael Thor
{"title":"Optimization of Hot Gas Welding of Hybrid Thermoplastic-Thermoset Composites Using Taguchi Method","authors":"Grete Steiner, Dominik Kuttner, Hans Lochner, Michael Thor","doi":"10.1007/s10443-024-10208-1","DOIUrl":"10.1007/s10443-024-10208-1","url":null,"abstract":"<div><p>In this study, the influence of four different process parameters on hot gas welding of CF/epoxy fiber composites functionalized with a PA6 thermoplastic film is investigated. Additional experiments are carried out on specimens adorned with triangular beads of coupling material that are printed onto the plates, ensuring extra material within the joining zone. This approach offers a great advantage for compensating geometric tolerances. The parameters considered are common process parameters for regular two-step processes: Heating element temperature (THE), heating time (HT), welding force (F) and welding time (HTF). The design of experiments (DoE) is planned according to the Taguchi method. An orthogonal array is used to set up the experimental plan. Three factor levels of each welding parameter are considered. The test series are carried out with two sample variants. In the second sample variant, additional thermoplastic material is placed in the joining zone. The strength of the welded joints is investigated by tensile shear tests according to DIN EN 1465. The results show that the welding force has the greatest influence on the welding strength. Heating times of 20 s were found to be optimal. Within the first sample variant, a saturation behavior of the welding force can be observed at 500 N. Higher heating element temperatures (500 °C) and welding forces (1165 N) are advantageous using additional material. High welding temperatures result in a negative effect on the interdiffusivity of the polymer chains.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"31 3","pages":"775 - 797"},"PeriodicalIF":2.3,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10443-024-10208-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139923232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of the Textile Reinforcement on the Joint Formation of Pin-Joined Composite/Metal Parts","authors":"Julian Popp, Dietmar Drummer","doi":"10.1007/s10443-024-10203-6","DOIUrl":"10.1007/s10443-024-10203-6","url":null,"abstract":"<div><p>Hybrid components consisting of continuous fiber reinforced thermoplastic (CFRT) and steel components exhibit promising potential in advanced lightweight construction. However, the joining operation presents a significant challenge due to the materials’ distinct physical and chemical properties. This paper studies a joining method in which dual pin arrays protruding from the surface of the metal component are inserted into the locally heated CFRT component to create a form-fitting joint. The primary objective is to scrutinize the influence of various CFRT materials on joint formation and quantify the resulting properties. The fiber type (glass and carbon) and fiber architecture (unidirectional and bidirectional reinforcement) are varied. All materials could successfully be joined via the direct pin pressing process, while depending on the CFRT material, distinct characteristic fiber morphologies could be identified. Bidirectionally reinforced carbon fiber reinforced samples showed the highest overall strength, while unidirectionally glass fiber reinforced samples showed the highest energy absorption and second highest ultimate strength.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"31 3","pages":"799 - 822"},"PeriodicalIF":2.3,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10443-024-10203-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139773043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}