{"title":"Performance Optimization of Sol-Derived C/Mullite Composites by Reducing the Sintering Shrinkage of Mullite Matrix","authors":"Wei Zhang, Qingsong Ma, Kuanhong Zeng, Weiguo Mao","doi":"10.1007/s10443-024-10227-y","DOIUrl":null,"url":null,"abstract":"<div><p>C/Mullite composites were fabricated through sol impregnation-drying-heating (SIDH) route using the sol with a high solid content in our previous work, and the composites showed desirable performance. However, it was found that thermal stress caused by sintering shrinkage of mullite matrix is one of the main factors leading to the performance regression of the composites. In present study, the sintering characteristic of Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> sol was modified to reduce the thermal stress caused by the sintering shrinkage of mullite matrix, optimizing the performance of the composites. The results showed that the sintering shrinkage of mullite matrix was reduced about 25% after heat treatment at 1600ºC by modifying the sintering characteristic of sol, resulting in that the thermal stress caused by sintering shrinkage of mullite matrix was reduced effectively. Therefore, the strength, modulus and fracture work of the composites were increased by about 19.4%, 24.5% and 24.9% to 318.4 MPa, 62.0 GPa and 6958 J/m<sup>2</sup>, respectively. Furthermore, thermal stability of the composites was also improved obviously in Ar and vacuum environment.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"31 4","pages":"1441 - 1455"},"PeriodicalIF":2.3000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10443-024-10227-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
C/Mullite composites were fabricated through sol impregnation-drying-heating (SIDH) route using the sol with a high solid content in our previous work, and the composites showed desirable performance. However, it was found that thermal stress caused by sintering shrinkage of mullite matrix is one of the main factors leading to the performance regression of the composites. In present study, the sintering characteristic of Al2O3-SiO2 sol was modified to reduce the thermal stress caused by the sintering shrinkage of mullite matrix, optimizing the performance of the composites. The results showed that the sintering shrinkage of mullite matrix was reduced about 25% after heat treatment at 1600ºC by modifying the sintering characteristic of sol, resulting in that the thermal stress caused by sintering shrinkage of mullite matrix was reduced effectively. Therefore, the strength, modulus and fracture work of the composites were increased by about 19.4%, 24.5% and 24.9% to 318.4 MPa, 62.0 GPa and 6958 J/m2, respectively. Furthermore, thermal stability of the composites was also improved obviously in Ar and vacuum environment.
期刊介绍:
Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes.
Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.