Mengyuan Li, Chris Stokes-Griffin, John Holmes, Silvano Sommacal, Paul Compston
{"title":"碳纤维/热塑性塑料 (PA6) 管状结构旋转拉弯成型的内部芯模设计比较","authors":"Mengyuan Li, Chris Stokes-Griffin, John Holmes, Silvano Sommacal, Paul Compston","doi":"10.1007/s10443-024-10234-z","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon fibre reinforced thermoplastic tubular structures can be post-formed into desired curvatures via rotary draw bending (RDB) at elevated temperatures. During this process, a rigid internal mandrel is required to support the walls of the tubes to maintain their ovality and minimise unwanted geometrical distortions. This paper investigates four internal mandrel designs for post-forming carbon fiber reinforced polyamide 6 (CF/PA6) thermoplastic tubes. Mandrel designs include silicone rod, bullet, wire, and coil spring, were evaluated through RDB-forming experiments with [± 60°]<sub>4</sub> CF/PA6 tubes formed to 90° bends. The designs were evaluated for their effectiveness on minimising distortions resulted from induced stresses during post-forming by measuring the post-formed tube diameter and extrados strains. The mandrel designs were also evaluated for their usability when integrated into the RDB process. Results from optical measurements and micro-computed tomography showed the spring mandrel outperformed others, producing tubes with the least geometrical distortions and no defects during the forming process. As compared to other designs, the spring mandrel is a reusable unibody design that is easy to assemble and remove from the tubes.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"31 4","pages":"1259 - 1273"},"PeriodicalIF":2.3000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10443-024-10234-z.pdf","citationCount":"0","resultStr":"{\"title\":\"A Comparison of Internal Mandrel Designs for Rotary Draw Bend Forming of Carbon-fibre/Thermoplastic (PA6) Tubular Structures\",\"authors\":\"Mengyuan Li, Chris Stokes-Griffin, John Holmes, Silvano Sommacal, Paul Compston\",\"doi\":\"10.1007/s10443-024-10234-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Carbon fibre reinforced thermoplastic tubular structures can be post-formed into desired curvatures via rotary draw bending (RDB) at elevated temperatures. During this process, a rigid internal mandrel is required to support the walls of the tubes to maintain their ovality and minimise unwanted geometrical distortions. This paper investigates four internal mandrel designs for post-forming carbon fiber reinforced polyamide 6 (CF/PA6) thermoplastic tubes. Mandrel designs include silicone rod, bullet, wire, and coil spring, were evaluated through RDB-forming experiments with [± 60°]<sub>4</sub> CF/PA6 tubes formed to 90° bends. The designs were evaluated for their effectiveness on minimising distortions resulted from induced stresses during post-forming by measuring the post-formed tube diameter and extrados strains. The mandrel designs were also evaluated for their usability when integrated into the RDB process. Results from optical measurements and micro-computed tomography showed the spring mandrel outperformed others, producing tubes with the least geometrical distortions and no defects during the forming process. As compared to other designs, the spring mandrel is a reusable unibody design that is easy to assemble and remove from the tubes.</p></div>\",\"PeriodicalId\":468,\"journal\":{\"name\":\"Applied Composite Materials\",\"volume\":\"31 4\",\"pages\":\"1259 - 1273\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10443-024-10234-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10443-024-10234-z\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10443-024-10234-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
A Comparison of Internal Mandrel Designs for Rotary Draw Bend Forming of Carbon-fibre/Thermoplastic (PA6) Tubular Structures
Carbon fibre reinforced thermoplastic tubular structures can be post-formed into desired curvatures via rotary draw bending (RDB) at elevated temperatures. During this process, a rigid internal mandrel is required to support the walls of the tubes to maintain their ovality and minimise unwanted geometrical distortions. This paper investigates four internal mandrel designs for post-forming carbon fiber reinforced polyamide 6 (CF/PA6) thermoplastic tubes. Mandrel designs include silicone rod, bullet, wire, and coil spring, were evaluated through RDB-forming experiments with [± 60°]4 CF/PA6 tubes formed to 90° bends. The designs were evaluated for their effectiveness on minimising distortions resulted from induced stresses during post-forming by measuring the post-formed tube diameter and extrados strains. The mandrel designs were also evaluated for their usability when integrated into the RDB process. Results from optical measurements and micro-computed tomography showed the spring mandrel outperformed others, producing tubes with the least geometrical distortions and no defects during the forming process. As compared to other designs, the spring mandrel is a reusable unibody design that is easy to assemble and remove from the tubes.
期刊介绍:
Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes.
Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.