Shadab Anwar Shaikh, M. F. N. Taufique, Kranthi Balusu, Shank S. Kulkarni, Forrest Hale, Jonathan Oleson, Ram Devanathan, Ayoub Soulami
{"title":"Correction: Finite Element Analysis and Machine Learning Guided Design of Carbon Fiber Organosheet-Based Battery Enclosures for Crashworthiness","authors":"Shadab Anwar Shaikh, M. F. N. Taufique, Kranthi Balusu, Shank S. Kulkarni, Forrest Hale, Jonathan Oleson, Ram Devanathan, Ayoub Soulami","doi":"10.1007/s10443-024-10249-6","DOIUrl":"10.1007/s10443-024-10249-6","url":null,"abstract":"","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"31 5","pages":"1497 - 1498"},"PeriodicalIF":2.3,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142412614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peter E. Caltagirone, Dylan S. Cousins, Dana Swan, David Snowberg, John R. Berger, Aaron P. Stebner
{"title":"Empirical Characterization and Modeling of Cohesive – to – Adhesive Shear Fracture Mode Transition due to Increased Adhesive Layer Thicknesses of Fiber Reinforced Composite Single – Lap Joints","authors":"Peter E. Caltagirone, Dylan S. Cousins, Dana Swan, David Snowberg, John R. Berger, Aaron P. Stebner","doi":"10.1007/s10443-024-10251-y","DOIUrl":"10.1007/s10443-024-10251-y","url":null,"abstract":"<div><p>To ensure a strong adhesive bond, most standards and adhesive manufacturers specify a maximum adhesive gap of 1 mm when bonding fiber reinforced composite structures. In manufacturing large components, such as joining two halves of wind turbine blades, meeting this gap tolerance specification is impractical; gaps larger than 10 mm are common in large adhesively bonded composite structures using state-of-the-art manufacturing techniques. Currently, there is a lack of fundamental understanding of the failure mechanics of adhesive gaps larger than 3 mm. To create such understanding, glass fiber – acrylic thermoplastic composite panels bonded using different epoxy adhesives within single-lap joint samples with adhesive thicknesses of 0.1 mm, 0.3 mm, 1 mm, 3 mm, 5 mm, and 10 mm were sheared to failure. A transition from cohesive to adhesive failure was observed to occur about 1 mm to 3 mm joint thicknesses. Plotting the shear stress normalized by the ratio of the joint width to thickness as a function of the joint thickness normalized by the joint length is shown to result in the ability to fit simple empirically derived models of the cohesive-to-adhesive failure transition, regardless of the adhesive. Furthermore, using these normalized variables, all the observed cohesively failed specimens collapse to a single master curve, as do the adhesively failed specimens.\u0000</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"31 5","pages":"1547 - 1570"},"PeriodicalIF":2.3,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unsupervised Machine Learning for Automatic Image Segmentation of Impact Damage in CFRP Composites","authors":"Olesya Zhupanska, Pavlo Krokhmal","doi":"10.1007/s10443-024-10252-x","DOIUrl":"10.1007/s10443-024-10252-x","url":null,"abstract":"<div><p>In this work, a novel unsupervised machine learning (ML) method for automatic image segmentation of low velocity impact damage in carbon fiber reinforced polymer (CFRP) composites has been developed. The method relies on the use of non-parametric statistical models in conjunction with the so-called intensity-based segmentation, enabling one to determine the thresholds of image histograms and isolate the damage. Statistical distance metrics, including the Kullback–Leibler divergence, the Helling distance, and the Renyi divergence are used to formulate and solve optimization problems for finding the thresholds. The developed method enabled rigorous and rapid automatic image segmentation of the grayscale images from the micro computed tomography (micro-CT) scans of the impacted CFRP composites. Sensitivity of the segmentation results with respect to the thresholds obtained using different statistical distances has been investigated. Based on the analysis of the segmentation results, it is concluded that the Kullback-Leibler divergence is the most appropriate statistical measure and should be used for automatic image segmentation of impact damage in CFRP composites.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"31 6","pages":"1849 - 1867"},"PeriodicalIF":2.3,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141610020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pilin Song, Zhiyong Yang, Mengfan Xue, Jiajun Zang, Mengcheng Sun, Shanshan Ye, Huade Sun, Peizhen Li, Zhiqiang Li
{"title":"Structural Design of SiCp/A356 Brake Discs Based on Multi-field Coupling and Material Characteristics","authors":"Pilin Song, Zhiyong Yang, Mengfan Xue, Jiajun Zang, Mengcheng Sun, Shanshan Ye, Huade Sun, Peizhen Li, Zhiqiang Li","doi":"10.1007/s10443-024-10248-7","DOIUrl":"10.1007/s10443-024-10248-7","url":null,"abstract":"<div><p>The structural design of the brake disc of urban rail trains, especially the design of the heat dissipation rib structure, affects the heat dissipation performance of the brake disc. Unreasonable design can lead to poor heat dissipation performance and generate energy consumption caused by large air-pumping resistance. However, the current structural design method for brake discs does not consider material characteristics and continues with materials such as steel and iron. There is no long-term service performance testing applicable to brake disc service conditions for lightweight and high-strength materials such as aluminum matrix composites. In addition, there is no comprehensive and systematic analysis of the structural design of cooling ribs. Therefore, a structure of SiCp/A356 brake discs for urban rail trains was designed in this work. Different from the previous design method, long-term performance testing of materials was conducted first, and then the heat dissipation performance and energy loss performance of different cooling rib structures were systematically analyzed to select the appropriate cooling rib structure. Based on long-term performance testing results, cooling rib optimization, and material forming process, a new brake disc structure was designed. The thermal-fluid–solid multi-field coupling simulation was conducted on the new structure brake disc under emergency braking and full round-trip conditions, and bench tests were conducted to verify the reliability of the simulation. Based on comprehensive simulation and bench test results, the new structure SiCp/A356 brake disc meets the established operating conditions. This design method considers material properties, multi-field coupling simulation, and engineering practice, which can a provide reference for the design of other brake discs and has high engineering application value.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"31 5","pages":"1515 - 1546"},"PeriodicalIF":2.3,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141610074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing the Impact Resilience of Subzero Composite Laminates by Novel Recycled Milled Hybrid Fillers","authors":"Indhumathi Elango, Arumugam Vellayaraj","doi":"10.1007/s10443-024-10244-x","DOIUrl":"https://doi.org/10.1007/s10443-024-10244-x","url":null,"abstract":"<p>Composites reinforced with fibres have a high specific strength and are very rigid, making them useful in the energy, aerospace, and automotive sectors. Composite constructions are susceptible to internal damage and residual strength loss due to unanticipated exterior impacts in the workplace. Addressing the disposal of composite materials sustainably is another persistent challenge. Low-velocity Impact at room temperature, -20 <sup>o</sup>C and -50 <sup>o</sup>C temperatures, and post-impact flexural (FAI) behaviour of glass/epoxy composite laminates are studied with the inclusion of recycled milled carbon (rmCF), recycled milled Kevlar (rmKF), and hybrid recycled fibres (rmHF) as fillers. Using ultra-sonication and mechanical stirring procedures, the glass/epoxy laminates were enhanced with 3.5% rmC Fillers, 0.375% rmK Fillers, and 0.375% rmH Fillers by weight of epoxy. The impact force, absorbed energy, residual flexural strength, and growth of damage area were used in investigations of surface roughness and hardness and the crash performances to evaluate the reaction of neat glass epoxy and glass epoxy composites loaded with recycled milled fillers to low-velocity impacts at sub-zero temperatures. With a peak force increase of 97.4%, a damaged area drop of 28%, and a reduction of 30.3% and 54.1% in surface roughness, respectively, the rmHF composites outperformed the baseline samples. The residual flexural strength of rmH filler samples was 14.2% more than that of raw glass epoxy composites during LVI testing, as measured in a 3-point bending test conducted at -20 <sup>o</sup>C. Recycled milled filler composite has better impact and FAI characteristics, making it a promising material for load-bearing uses in sub-zero temperatures.</p>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"84 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141610075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of the Impact of Thermo-Stamping, Fiber Orientation, and Metal Thickness on the Formability of Fiber Metal Laminates","authors":"Hamza Blala, Cheng Pengzhi, Zhang Shenglun, Cheng Gang, Ruan Shangwen, Meng Zhang","doi":"10.1007/s10443-024-10250-z","DOIUrl":"10.1007/s10443-024-10250-z","url":null,"abstract":"<div><p>Despite being invented several decades ago, fiber metal laminates (FMLs) still encounter challenges in large-scale manufacturing, especially in forming small and complex-shaped components. These challenges arise from the limited strain rate of the fiber layers compared to the metallic layers. Consequently, conventional approaches to form FML parts are often inadequate. To produce parts free of defects such as fractures and wrinkles, this study investigates the effects of Thermo-stamping (TH-S), in addition to fiber orientation, on the forming behavior of FMLs, employing two different aluminum layer thicknesses. A comprehensive approach combining finite element simulations and experimental analyses was employed. The study investigated thinning of aluminum alloy layers, stress distributions across different layers, and the influence of fiber orientation. The FML blanks are made of a middle woven glass fiber prepreg with a thickness of 0.2 mm, using a thermosetting epoxy system, and Al 2024-T3 alloy sheets with varying thicknesses of 0.3 mm and 0.5 mm. Material behavior was evaluated using Abaqus software, applying the Johnson-Cook criterion for damage initiation in ductile metals and Hashin’s theory for damage initiation in fiber-reinforced composites. These simulations were then compared with experimental results. The findings highlight the potential of the TH-S process to enhance the forming performance of FMLs, particularly evident in the case of the 0°/45° middle layer fiber, which exhibits a higher forming depth and a more uniform thickness distribution. Additionally, a greater flexibility of the glass fiber under the 0°/45° layup compared to the 0/90 layup was detected. This flexibility provides the aluminum layers with more freedom of deformation in the plastic domain. These advancements hold promise for widespread industrial applications of FMLs.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"31 5","pages":"1767 - 1789"},"PeriodicalIF":2.3,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141586929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of a Flexible Porous GNP-PDMS Composite: Tunable Thermal and Electrical Properties for Novel Applications","authors":"Mohamad-Anas Hejazi, Levent Trabzon","doi":"10.1007/s10443-024-10246-9","DOIUrl":"10.1007/s10443-024-10246-9","url":null,"abstract":"<div><p>The integration of carbon nanomaterials with flexible polymers has received intensive attention as a promising research direction in developing materials with novel properties for advanced applications. Herein, we report on the fabrication and characterization of flexible porous polydimethylsiloxane (PDMS) coated with graphene nanoplatelets (GNPs). We explore the mechanisms affecting its various properties under deformation, and propose new applications for it. The results show lightweight and excellent flexibility characteristics for the obtained GNP-PDMS composite. Measurements of its electrical resistance revealed a change in the electrical resistivity from 2.35 × 10<sup>6</sup> Ω·m to 194 Ω·m under a strain change from 10 to 80% illustrating its ability to shift behavior from an electrical insulator to a relatively low resistivity material and demonstrating the considerable potential for use as a flexible electrical switch. Moreover, the thermal conductivity of GNP-PDMS was found to be significantly enhanced (up to ∼ 110%) by changing the level of compression from 20 to 80%, proving a strain-tunable thermal performance, allowing its utilization as an insulation material of variable conductance for unique thermal management applications.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"31 5","pages":"1645 - 1661"},"PeriodicalIF":2.3,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141575871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haiyang Zhang, Zelin Li, Yichen Deng, Hui Li, Hang Cao, Xiangping Wang
{"title":"Optimal Design Study of Vibro-Acoustic Resistance of Porous Foam Composite Laminates","authors":"Haiyang Zhang, Zelin Li, Yichen Deng, Hui Li, Hang Cao, Xiangping Wang","doi":"10.1007/s10443-024-10241-0","DOIUrl":"10.1007/s10443-024-10241-0","url":null,"abstract":"<div><p>Optimal design study of vibro-acoustic resistance of porous foam composite laminates (PFCLs) is presented in this paper. A dynamic model of the PFCLs subjected to the plane acoustic excitation load is firstly proposed with consideration of upper and lower composite skins and a uniform porous foam. The vibration and acoustic solutions of the PFCLs with acoustic energy excitation are further acquired using the first-order shear deformation theory, the finite element method, the Rayleigh integral approach, the mode superposition technique, etc. Subsequently, a vibro-acoustic optimization model is established by accounting for appropriate design variables and constraints, in which resonance responses, sound transmission losses, and overall structural mass are taken as objective functions, respectively, and the artificial immune clonal selection algorithm is adopted to improve the efficiency in the optimization calculations. After such an algorithm and the current model are thoroughly validated, single-objective, dual-objective, and multi-objective optimizations are undertaken on the PFCLs to achieve the optimal design parameters. The research results indicate that it is hard to enhance the vibro-acoustic resistance and lightweight property of the PFCLs simultaneously, which means some compromise results of design parameters need to be chosen. It is suggested to determine the concerned optimal design results by referring to the nearby turning points associated with the Pareto-optimal solutions.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"31 5","pages":"1663 - 1686"},"PeriodicalIF":2.3,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141549044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Norman Osa-uwagboe, Vadim V. Silberschmidt, Emrah Demirci
{"title":"Review on Mechanical Performance of Fibre-Reinforced Plastics in Marine Environments","authors":"Norman Osa-uwagboe, Vadim V. Silberschmidt, Emrah Demirci","doi":"10.1007/s10443-024-10247-8","DOIUrl":"10.1007/s10443-024-10247-8","url":null,"abstract":"<div><p>Fibre-reinforced plastics (FRPs) are increasingly popular in marine applications, such as boats, offshore wind-power installations, as well as oil and gas offshore systems thanks to their high stiffness, light weight, and damage resistance. This paper aims to examine the recent developments in the investigation of the effects of moisture uptake on the mechanical performance of FRP for maritime applications, to identify the gaps in the literature, and to suggest likely future research directions in this area. While the review is limited to recent studies—within the last two decades, it discusses in detail the current advances in the experimental investigations of moisture uptake on critical mechanical performance including tensile, flexural, shear and viscoelastic properties, thus covering the major quasi-static and dynamic regimes of FRPs subjected to seawater exposure.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"31 6","pages":"1991 - 2018"},"PeriodicalIF":2.3,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10443-024-10247-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141549045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Davide Mocerino, Moisés Zarzoso, Federico Sket, Jon Molina, Carlos González
{"title":"A Machine Learning Boosted Data Reduction Methodology for Translaminar Fracture of Structural Composites","authors":"Davide Mocerino, Moisés Zarzoso, Federico Sket, Jon Molina, Carlos González","doi":"10.1007/s10443-024-10236-x","DOIUrl":"10.1007/s10443-024-10236-x","url":null,"abstract":"<div><p>This work explored a machine learning (ML) algorithm as a fast data reduction method for translaminar fracture energy in composite laminates. The method was validated with translaminar fracture tests on compact tension (CT) specimens on AS4/8552 and IM7/8552 cross-ply lay-ups. Experimental fracture energy and R-curves for both materials were determined using the most common data reduction methods, such as the compliance calibration (CC), the area (AM) and the Irwin relationship (IM). Our new data reduction method uses a surrogate model based on an artificial neural network (ANN) trained with synthetic data generated with the cohesive crack finite element model. Such a surrogate model maps the cohesive properties with the corresponding load–displacement, crack-displacement and energy-displacement curves with interrogation times in the order of 20 ms and relative errors in the load–displacement and crack growth less than 2%. Such performance enabled its encapsulation to approximate the inverse problem to infer the cohesive parameters with the maximum likelihood estimator (MLE) directly from the experimental load–displacement and crack-displacement curves. The results demonstrated the ability of the model to deliver cohesive parameter inference directly from the macroscopic tests carried out at the laboratory level.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"31 6","pages":"1833 - 1848"},"PeriodicalIF":2.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10443-024-10236-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}