Design Optimization for Hydrostatic Pressure in Hybrid Composite Cylinders

IF 2.3 4区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES
Akongnwi Nfor Ngwa, Birendra Chaudhary, Helio Matos, Arun Shukla
{"title":"Design Optimization for Hydrostatic Pressure in Hybrid Composite Cylinders","authors":"Akongnwi Nfor Ngwa,&nbsp;Birendra Chaudhary,&nbsp;Helio Matos,&nbsp;Arun Shukla","doi":"10.1007/s10443-024-10293-2","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores an optimization system to achieve the highest collapse pressure on glass-carbon hybrid composite cylinders under hydrostatic loading conditions. This work evaluates and validates previously established composite buckling solutions for cylindrical composite structures under hydrostatic pressure with experimental results of hybrid composite shells. It utilizes the validated analytical solution to optimize the buckling pressure by varying layup configuration, optimum layup angle, material content, and thickness of each lamina. The optimization is performed on asymmetric and symmetric layup cases to evaluate the influence of the hybrid layup construction on the buckling performance of the structure. Results show that the thicker glass fiber plies are preferred for inner layers and the stiffer carbon fiber plies for the outermost layers to achieve maximum buckling collapse pressure for all the optimization cases, as this configuration provides superior flexural rigidity. For hybrid composite structures with asymmetric configurations, the collapse pressure can be higher when most layers are made of glass fiber if the glass layers are at least twice as thick as the carbon layers. Similarly, axial-load-resistant layers (0°) should be located around the geometric center of the laminate with the hoop-load-resistant layers (90°) on or near the outermost layers and shear-resistant layers (45°) between these layers for both symmetric and asymmetric hybrid structures. Moreover, long tubes with small diameters (L/D &gt; 10) favor hoop bending stiffnesses (90°) for all layers in the laminate due to less influence of boundary conditions at endcap locations.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"32 2","pages":"373 - 394"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10443-024-10293-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10443-024-10293-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores an optimization system to achieve the highest collapse pressure on glass-carbon hybrid composite cylinders under hydrostatic loading conditions. This work evaluates and validates previously established composite buckling solutions for cylindrical composite structures under hydrostatic pressure with experimental results of hybrid composite shells. It utilizes the validated analytical solution to optimize the buckling pressure by varying layup configuration, optimum layup angle, material content, and thickness of each lamina. The optimization is performed on asymmetric and symmetric layup cases to evaluate the influence of the hybrid layup construction on the buckling performance of the structure. Results show that the thicker glass fiber plies are preferred for inner layers and the stiffer carbon fiber plies for the outermost layers to achieve maximum buckling collapse pressure for all the optimization cases, as this configuration provides superior flexural rigidity. For hybrid composite structures with asymmetric configurations, the collapse pressure can be higher when most layers are made of glass fiber if the glass layers are at least twice as thick as the carbon layers. Similarly, axial-load-resistant layers (0°) should be located around the geometric center of the laminate with the hoop-load-resistant layers (90°) on or near the outermost layers and shear-resistant layers (45°) between these layers for both symmetric and asymmetric hybrid structures. Moreover, long tubes with small diameters (L/D > 10) favor hoop bending stiffnesses (90°) for all layers in the laminate due to less influence of boundary conditions at endcap locations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Composite Materials
Applied Composite Materials 工程技术-材料科学:复合
CiteScore
4.20
自引率
4.30%
发文量
81
审稿时长
1.6 months
期刊介绍: Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes. Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信