{"title":"Integrating LC-MS/MS and In Silico Methods to Uncover Bioactive Compounds with Lipase Inhibitory Potential in the Antarctic Moss Warnstorfia fontinaliopsis.","authors":"Hirotake Yamaguchi, Ryoichi Yamada, Kristina Lama, Ui Joung Youn, Jun Hyuck Lee, Tae-Jin Oh","doi":"10.1007/s12010-024-05139-3","DOIUrl":"https://doi.org/10.1007/s12010-024-05139-3","url":null,"abstract":"<p><p>Antarctic organisms are known for producing unique secondary metabolites, and this study specifically focuses on the less-explored metabolites of the moss Warnstorfia fontinaliopsis. To evaluate their potential bioactivity, we extracted secondary metabolites using four different solvents and identified significant lipase inhibitory activity in the methanol extract. Non-targeted metabolomic analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) on this extract predicted the presence of 12 compounds, including several not previously reported in mosses. To gain insights into their enzyme inhibitory activity, the binding affinities of these candidate compounds to lipase were evaluated through in silico molecular docking. Further validation by molecular dynamics (MD) simulations revealed that hyocholic acid and pheophorbide A form stable complexes with human pancreatic lipase (HPL). Based on these results, targeted fractionation experiments were performed, yielding eight fractions. Among these, Fractions 4 and 6, which are assumed to contain those compounds, exhibited higher lipase inhibitory activity compared to the crude extract. Additionally, pharmacokinetic properties of those compounds were analyzed using SwissADME and Molinspiration calculations, suggesting their potential as drug candidates. This study establishes a promising methodology for identifying rare bioactive compounds of low abundance in underexplored natural resources by combining LC-MS/MS analysis with molecular docking. These findings also provide new insights into the chemical ecology of Antarctic mosses and their potential applications in pharmaceutical development.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142942350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Epoxy-Affixed ZIF-8/CS/Cellulase: a Sustainable Approach for Hydrolysis of Agricultural Waste to Reducing Sugars.","authors":"Shashi Suhag, Vinita Hooda","doi":"10.1007/s12010-024-05144-6","DOIUrl":"https://doi.org/10.1007/s12010-024-05144-6","url":null,"abstract":"<p><p>Cellulase was effectively immobilized onto an epoxy-bound chitosan-modified zinc metal-organic framework (epoxy/ZIF-8/CS/cellulase) support, yielding a conjugation rate of 0.64 ± 0.02 mg/cm2 and retaining 80.01 ± 0.01% of its specific activity. The bare and cellulase-bound supports was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and energy-dispersive X-ray spectroscopy. The immobilized enzyme exhibited optimal activity at pH 5.5 and a temperature of 70 ℃. The efficiency, stability and reactivity of the enzyme improved after immobilization, as evidenced by a decrease in activation energy, enthalpy and Gibbs free energy along with an increase in entropy change. The epoxy-affixed ZIF-8/CS/cellulase strip was successfully employed for rice husk hydrolysis achieving an impressive conversion efficiency of 95%. The method demonstrated a linear range from 0.1 to 0.9% (0.1 × 10<sup>-2</sup> to 0.9 × 10<sup>-2</sup> mg/ml) and exhibited a strong correlation (R<sup>2</sup> = 0.998) with the widely adopted 3, 5-dinitrosalicylic acid method. The epoxy/ZIF-8/CS bound cellulase exhibited remarkable thermal stability, retaining 100% of its activity at 70 °C, in contrast to just 53% for the free enzyme and displayed a half-life of 21 days after storage at 4 °C compared to 9 days for the free enzyme. Furthermore, it retained over 95% activity after 12 h at pH levels of 4.5 and 5.5 and showcased excellent reusability, maintaining activity over 25 cycles. Overall, this method offers high conversion efficiency and selectivity under benign conditions, with no undesirable by-products, making it a cost-effective solution for the routine hydrolysis of lignocellulosic biomass feedstock.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142942347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nashwa Maghraby, Mona A H El-Baz, Athar M A Hassan, Sary Kh Abd-Elghaffar, Amira S Ahmed, Mahmoud S Sabra
{"title":"Metformin Alleviates Doxorubicin-Induced Cardiotoxicity via Preserving Mitochondrial Dynamics Balance and Calcium Homeostasis.","authors":"Nashwa Maghraby, Mona A H El-Baz, Athar M A Hassan, Sary Kh Abd-Elghaffar, Amira S Ahmed, Mahmoud S Sabra","doi":"10.1007/s12010-024-05141-9","DOIUrl":"https://doi.org/10.1007/s12010-024-05141-9","url":null,"abstract":"<p><p>Doxorubicin (DOX) is a commonly used chemotherapeutic medication for treating malignancies, although its cardiotoxicity limits its use. There is growing evidence that alteration of the mitochondrial fission/fusion dynamic processes accompanied by excessive reactive oxygen species (ROS) production and alteration of calcium Ca<sup>2+</sup> homeostasis are potential underlying mechanisms of DOX-induced cardiotoxicity (DIC). Metformin (Met) is an AMP-activated protein kinase (AMPK) activator that has antioxidant properties and cardioprotective effects. The purpose of the study is to assess Met's possible cardioprotective benefits against DOX-induced cardiotoxicity. The study included 32 adult male rats. They were randomly divided into four groups: administered saline, DOX, Met, or DOX combined with Met respectively. Heart tissues were used for biochemical assays that measured oxidative stress markers, malondialdehyde (MDA), reduced glutathione (GSH), mitochondrial dynamics markers, optic atrophy-1(OPA-1) and dynamin-1-like protein (Drp1), calcineurin and caspase-3. Serum levels of myocardial injury markers, cardiac troponin I (cTn-I), and aspartate aminotransferase (AST), were also measured. The results revealed that DOX intoxication was associated with a significant increase in the levels of serum cTn-I and AST, increased cardiac MDA level, increased cardiac Drp1, calcineurin, and caspase-3 expressions, as well as reduced cardiac GSH level and cardiac OPA-1 expression. On the other hand, Met treatment significantly reduced DIC by decreasing oxidative stress, apoptosis, and improving mitochondrial and calcium balance. Finally, this study shows that Met may be able to protect the heart from damage caused by DOX by working as an antioxidant and anti-apoptotic agent and keeping the balance of calcium and mitochondria.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142942354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sanjay S Gaikwad, Mehul M Hiwale, Shankesh C Zyate, Santosh B Gaikwad, Suresh B Waghmode, Amardeep R Jadhao
{"title":"Laccase Mediated One-Pot, Green Synthesis of Thiazoles, β-Keto Sulfones and Imidazopyridines.","authors":"Sanjay S Gaikwad, Mehul M Hiwale, Shankesh C Zyate, Santosh B Gaikwad, Suresh B Waghmode, Amardeep R Jadhao","doi":"10.1007/s12010-024-05157-1","DOIUrl":"https://doi.org/10.1007/s12010-024-05157-1","url":null,"abstract":"<p><p>We report the first in situ reaction of the β-haloketones obtained from laccase catalysed oxidation of secondary alcohol 2-halo phenylethanol's in present study. To the best of our knowledge, this is the first ever fusion of laccase catalysed oxidation reaction with green organic synthetic reaction. The methodology employs molecular oxygen to oxidize secondary alcohol in biphasic medium by laccase from T. giganteum AGHP, to obtain β-haloketones. This research provides environmentally benign access to thiazole, β-ketosulfone and imidazopyridine derivatives in good to very good yields with wide functional group tolerance.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142942353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shahid Nawaz, Leigh Skala, Muhammad Amin, Fernanda Iruegas-Bocardo, Arash Samadi, K H Ahammad Uz Zaman, Jeff H Chang, Imran Sajid, Taifo Mahmud
{"title":"Genomic, Molecular Networking-Based Metabolomic, and Bioactivity Profiling of Actinobacteria from Undisturbed Caves in Pakistan.","authors":"Shahid Nawaz, Leigh Skala, Muhammad Amin, Fernanda Iruegas-Bocardo, Arash Samadi, K H Ahammad Uz Zaman, Jeff H Chang, Imran Sajid, Taifo Mahmud","doi":"10.1007/s12010-024-05158-0","DOIUrl":"https://doi.org/10.1007/s12010-024-05158-0","url":null,"abstract":"<p><p>Caves are a unique ecosystem that harbor diverse microorganisms, and provide a challenging environment to the dwelling microbial communities, which may boost gene expression and can lead to the production of inimitable bioactive natural products. In this study, we obtained 59 actinobacteria from four different caves located in Bahadurkhel, District Karak, Pakistan. On the basis of taxonomic characteristics, 30 isolates were selected and screened for secondary metabolites production and bioactivity profiling. The extracts of all the isolates exhibited promising antibacterial activity against several pathogenic bacteria, with the best outcome seen in the extract of isolate SNK 21. The metabolomic analysis of the extracts by LC-MS/MS-based molecular networking and whole genome sequencing (WGS) followed by antiSMASH analysis revealed the presence of diverse secondary metabolites and biosynthetic gene clusters (BGCs) in SNK 21. Purification of compounds by manual chromatography, HPLC, and characterization by NMR, HR-MS, led to the identification of the active compounds, actinomycin D and its isomer. In addition, metabolomic analysis and genome mining of morphologically distinct isolates, SNK 202 and SNK 329, also showed diverse secondary metabolites and BGCs, underscoring the potential of actinobacteria from undisturbed caves in Pakistan as a new source of bioactive compounds.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142942349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Renganathan Vijayan, Ponnurengam Malliappan Sivakumar, Selcuk Hazir, A Ram Kumar, Ramalingam Karthik Raja
{"title":"Phytochemical and Antioxidant Analysis of Bioactive Compound Extract from Nelumbo nucifera against Cancer Proteins: In Silico Spectroscopic Approach.","authors":"Renganathan Vijayan, Ponnurengam Malliappan Sivakumar, Selcuk Hazir, A Ram Kumar, Ramalingam Karthik Raja","doi":"10.1007/s12010-024-05167-z","DOIUrl":"https://doi.org/10.1007/s12010-024-05167-z","url":null,"abstract":"<p><p>Nelumbo nucifera, an aquatic crop cultivated throughout Asian countries, belongs to the Nelumbonaceae family and has been widely used in traditional medicines with key pharmacological activities such as anti-viral, antipyretic, antioxidant, anti-steroid, anti-inflammatory, anti-arrhythmia, anti-obesity, and anti-aging properties. The present study aims to explore and assess the phytochemical composition, GC-MS profiling, antioxidant efficacy, and the major phytoconstituent phytol subjected to theoretical spectroscopic characterization using the DFT method. The phytochemical profiling of N. nucifera reveals the presence of alkaloids, carbohydrates, saponin, phenol, and flavonoids. The antioxidant efficacy of N. nucifera extract against DPPH and ABTS radicals increased in a concentration-dependent manner, with an IC<sub>50</sub> value of 222.84 µg and 52.67 µg, respectively. The simulated structural parameters of phytol exhibited strong concordance with experimental values. The simulated wavenumbers identified characteristic peaks corresponding to hydroxyl (OH), methylene (CH<sub>2</sub>), and methyl (CH<sub>3</sub>) groups. The simulated electronic spectrum of phytol exhibits a prominent absorption peak at 174 nm, predominantly attributed to the transitions H-1 → L (58%) and H → L (36%). NBO analysis reveals significant stabilization energy (7.09 kJ/mol) due to the donation of electrons from the C<sub>20</sub>-H<sub>58</sub> bonding orbital to the anti-bonding orbital of C<sub>18</sub>-C<sub>19</sub> via a σ → σ* transition. In Mulliken charge distribution, compared to other hydrogen, hydrogen H<sub>61</sub> in the hydroxyl (O-H) group exhibits a higher positive potential due to the influence of the oxygen atom. In addition, molecular docking was performed against breast cancer SMAD proteins to confirm its antagonist property, with binding energies of - 3.64 kcal/mol (6OM2), - 5.49 kcal/mol (1U7F), - 5.05 kcal/mol (1U7V), and - 3.73 kcal/mol (6FX4).</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142942358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Maturano-Carrera, Omar Oltehua-López, Flor de María Cuervo-López, Anne-Claire Texier
{"title":"Removal of Ampicillin with Nitrifying Cultures in a SBR Reactor.","authors":"Daniel Maturano-Carrera, Omar Oltehua-López, Flor de María Cuervo-López, Anne-Claire Texier","doi":"10.1007/s12010-024-05165-1","DOIUrl":"https://doi.org/10.1007/s12010-024-05165-1","url":null,"abstract":"<p><p>The presence of antibiotics in wastewater discharges significantly affects the environment, mainly due to the generation of bacterial populations with multiple antibiotic resistances. The cometabolic capacity of nitrifying sludge to simultaneously remove ammonium (NH<sub>4</sub><sup>+</sup>) and emerging organic contaminants (EOCs), including antibiotics, has been reported. In the present study, the removal capacity of 50 mg ampicillin (AMP)/L by nitrifying cultures associated with biosorption and biotransformation processes was evaluated in a sequencing batch reactor (SBR) system. The contribution of nitrifying enzymes (ammonium monooxygenase (AMO) and nitrite oxidoreductase (NOR)) and β-lactamases in AMP biodegradation was evaluated using specific inhibitors in batch cultures. AMP was 100% eliminated after 5 h since the first cycle of operation. The sludge maintained its ammonium oxidizing capacity with the total consumption of 102.0 ± 2.5 mg NH<sub>4</sub><sup>+</sup>-N/L in 9 h, however, the addition of AMP altered the nitrite-oxidizing process of nitrification, recovering 30 cycles later at both physiological and kinetic level. The kinetic activity of the nitrifying sludge improved along the operating cycles for both AMP removal and nitrification processes. The elimination of 24% AMP was attributed to the biosorption process and 76% to biotransformation, wherein the AMO enzyme contributed 95% to its biodegradation. Finally, the repeated exposure of the sludge to AMP for 72 operating cycles (36 days) was not sufficient to detect β-lactamase activity. The cometabolic ability of ammonium-oxidizing bacteria for biodegrading AMP could be employed for bioremediation of wastewater.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142942295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiang Ke, Xing Jiang, Muhammad Hammad Hussain, Xiwei Tian, Ju Chu
{"title":"Succinylome Profiling the Function and Distribution of Lysine Succinylation in Saccharopolyspora erythraea.","authors":"Xiang Ke, Xing Jiang, Muhammad Hammad Hussain, Xiwei Tian, Ju Chu","doi":"10.1007/s12010-024-05176-y","DOIUrl":"https://doi.org/10.1007/s12010-024-05176-y","url":null,"abstract":"<p><p>As a novel protein post-translational modification, lysine succinylation is widely involved in metabolism regulation. To describe succinylated lysine's physiological functions and distribution patterns in Saccharopolyspora erythraea, a large and global protein succinylome was identified in a hypersuccinylated strain E3ΔsucC, using high-resolution 4D label-free mass spectrometry. Bioinformatic analysis was conducted to examine the succinylated proteins further in this study. The results showed that succinylated proteins were identified to be predominantly involved in protein synthesis, central carbon and nitrogen metabolism, and secondary metabolism. The process of lysine succinylation was found intricately regulated by a delicate interplay of factors, such as the relative abundance of lysine within the protein, the strategic positioning of polar amino acids flanking the succinylated sites, and the degree to which lysine residues are exposed to the solvent, thereby shaping the landscape of post-translational modifications. This systematic analysis has represented the global analysis of lysine succinylation in S. erythraea and has provided an important resource for exploring the function and regulation of lysine succinylation in S. erythraea and likely in all actinomycetes.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142942300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ana Kezia Pimentel de Brito, Samara Cláudia Picanço Batista, Laynah Pimenta, Elliza Emilly Perrone Barbosa, Salomão Rocha Martim, Maria Francisca Simas Teixeira
{"title":"Proteases from an Amazonian Mushroom Species: A Mycotechnological Alternative for the Production of Milk Coagulant.","authors":"Ana Kezia Pimentel de Brito, Samara Cláudia Picanço Batista, Laynah Pimenta, Elliza Emilly Perrone Barbosa, Salomão Rocha Martim, Maria Francisca Simas Teixeira","doi":"10.1007/s12010-024-05155-3","DOIUrl":"https://doi.org/10.1007/s12010-024-05155-3","url":null,"abstract":"<p><p>Edible mushrooms have been used as sustainable sources of proteases of industrial interest. The aim of this research was to investigate the influence of different culture media on mycelial growth and the potential of an Amazonian mushroom species, Auricularia fuscosuccinea DPUA 1624, in the biosynthesis of bovine milk coagulant enzymes. The species was cultivated on Sabouraud agar, malt, glucose, and peptone agar, malt extract agar, and glucose and peptone agar, supplemented with yeast extract for mycelial development. Enzyme biosynthesis was evaluated by submerged fermentation. Subsequently, the cultures were incubated at 28 °C for 8 days. Proteolytic and coagulant activities were determined using 1% azocasein solution and milk powder as substrates, respectively. In the results of radial growth speed of A. fuscosuccinea, the values were significant in the GYP and SAB + YE culture media. However, GYP agar favored the growth and mycelial vigor of A. fuscosuccinea; therefore, this medium was selected to obtain inoculum in the tests. In submerged fermentation, the MGYP medium favored the synthesis of proteases for A. fuscosuccinea and synthesized coagulant proteases in 100% of the media, in which significant activity was observed in SAB + YE. The significant production of coagulant proteases of A. fuscosuccinea was obtained under the following conditions: inoculum size 10%, 8 days of fermentation period, and 8 days of inoculum age. The results indicate that A. fuscosuccinea DPUA 1624 has potential for use in industrial manufacturing, especially in dairy products.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142942359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of Fold-Promoting Mutation and Signal Peptide Screening on Recombinant Glucan 1,4-Alpha-maltohydrolase Secretion in Pichia pastoris.","authors":"Siyi Wang, Kai Zhu, Pulin Liu","doi":"10.1007/s12010-024-05145-5","DOIUrl":"https://doi.org/10.1007/s12010-024-05145-5","url":null,"abstract":"<p><p>Glucan 1,4-alpha-maltohydrolase (3.2.1.133, GMH) is an important biocatalyst in the baking industry, which could delay the retrogradation of bread and improve its cold-storage durability. In the present study, a newly cloned Thgmh was characterized and secreted by Pichia pastoris (Komagataella pastoris). After computationally assisted rational design that promotes peptide folding, the maltogenic activity in supernatant was enhanced 1.6-fold in comparison with the base strain. The signal leading sequence screening and the gene dosage increment further improved secretion by approximately 6.4-fold. The purified rationally designed ThGMHs exhibited maximal activity against soluble starch at pH 7.0 and 60 ℃, and maltose is the main catalytic product. In a 5-L bioreactor, conventional fed-batch fermentation resulted in 6130 U mL<sup>-1</sup> extracellular maltogenic activity. Therefore, a promising strain for GMH production was developed, which provides a useful reference for the secretory production of other industrial enzymes.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142942345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}