Applied Biochemistry and Biotechnology最新文献

筛选
英文 中文
Predictive Production of a New Highly Soluble Glucoside, Corylin-7-O-β-Glucoside with Potent Anti-inflammatory and Anti-melanoma Activities. 预测性生产具有强效抗炎和抗黑色素瘤活性的新型高溶性葡萄糖苷--Corylin-7-O-β-Glucoside。
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2024-10-08 DOI: 10.1007/s12010-024-05071-6
Te-Sheng Chang, Jiumn-Yih Wu, Hsiou-Yu Ding, Lemmuel L Tayo, Khyle S Suratos, Po-Wei Tsai, Tzi-Yuan Wang, Yu-Ning Fong, Huei-Ju Ting
{"title":"Predictive Production of a New Highly Soluble Glucoside, Corylin-7-O-β-Glucoside with Potent Anti-inflammatory and Anti-melanoma Activities.","authors":"Te-Sheng Chang, Jiumn-Yih Wu, Hsiou-Yu Ding, Lemmuel L Tayo, Khyle S Suratos, Po-Wei Tsai, Tzi-Yuan Wang, Yu-Ning Fong, Huei-Ju Ting","doi":"10.1007/s12010-024-05071-6","DOIUrl":"https://doi.org/10.1007/s12010-024-05071-6","url":null,"abstract":"<p><p>Computational tools can now facilitate screening precursors and selecting suitable biotransformation enzymes for producing new bioactive compounds. This study applied the data-mining approach to screen for candidate precursors of glycosyltransferases to produce new glucosides from 412 commercial natural compounds. Among five candidates, experimental results showed that only corylin could be glycosylated by the bacterial glycosyltransferase, BsUGT489. Analysis of interaction potential between candidates and glycosyltransferase by molecular docking tools also found that corylin was the only compatible substrate. The new glucoside was purified and confirmed to be corylin-7-O-β-glucoside. The aqueous solubility of corylin-7-O-β-glucoside was 14.2 times more than its precursor aglycone, corylin. Corylin-7-O-β-glucoside retained anti-inflammatory activity in lipopolysaccharide-induced nitric oxide production of murine macrophage RAW 264.7 cells, with an IC<sub>50</sub> value of 121.1 ± 9.5 µM. Further, corylin-7-O-β-glucoside exhibited more potent anti-melanoma activity against murine B16 and human A2058 melanoma cells than corylin. Together, predictive studies facilitate the production of a new glucoside, corylin-7-O-β-glucoside, which is highly soluble and possesses anti-inflammatory and anti-melanoma activities and therefore has promising future applications in pharmacology.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ursolic Acid Restores Redox Homeostasis and Pro-inflammatory Cytokine Production in Denervation-Induced Skeletal Muscle Atrophy. 熊果酸可恢复去神经支配诱导的骨骼肌萎缩中的氧化还原平衡和促炎细胞因子的产生
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2024-10-03 DOI: 10.1007/s12010-024-05059-2
Aarti Yadav, Rajesh Dabur
{"title":"Ursolic Acid Restores Redox Homeostasis and Pro-inflammatory Cytokine Production in Denervation-Induced Skeletal Muscle Atrophy.","authors":"Aarti Yadav, Rajesh Dabur","doi":"10.1007/s12010-024-05059-2","DOIUrl":"https://doi.org/10.1007/s12010-024-05059-2","url":null,"abstract":"<p><p>Skeletal muscle (SkM) atrophy results from metabolic disorders causing body and muscle mass loss, affecting morbidity and mortality. Increased oxidative stress, inflammation, and poor prognosis are the leading causes of involuntary weight loss. Ursolic acid (UA), known for its antioxidant and anti-inflammatory properties, can potentially reduce oxidative stress and inflammation in muscles, but its effects on muscle mass regulation are still unknown. Therefore, the present study investigated the medicinal efficacy of UA and its mode of action against the murine model of SkM atrophy over 7 days of UA supplementation. Denervation-induced SkM atrophy significantly impacts overall body weight and the weight of individual muscles (p < 0.05). However, supplementation with UA can effectively counteract these effects by promoting the synthesis of the slow-myosin heavy chain, thereby restoring body weight and myotube diameter. Moreover, UA also plays a crucial role in reducing the production levels of reactive oxygen species (ROS), lipid peroxidation (LPO), and caspase-3-like activity in atrophied muscles. UA also prevents the leakage of creatine kinase (CK) through the upregulation of superoxide dismutase (SOD) and glutathione peroxidase (GPx) expression. Furthermore, the results obtained from qRT-PCR demonstrated a significant decrease in the levels of pro-inflammatory markers, namely IL-1β, IL-6, TNF-α, and TWEAK, up to four-fold after the third day of the UA intervention. UA also upregulated PGC-1α, Bcl2, and p-Akt<sup>ser473</sup> expression towards the regulation of redox homeostasis.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Adding Benzyl Alcohol on Hydrogen Production from Lignite. 添加苄醇对褐煤制氢的影响
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2024-10-02 DOI: 10.1007/s12010-024-05074-3
Hongwang Liang, Ying Wang, Jun Li, Zhimin Zhao, Litong Ma
{"title":"Effect of Adding Benzyl Alcohol on Hydrogen Production from Lignite.","authors":"Hongwang Liang, Ying Wang, Jun Li, Zhimin Zhao, Litong Ma","doi":"10.1007/s12010-024-05074-3","DOIUrl":"https://doi.org/10.1007/s12010-024-05074-3","url":null,"abstract":"<p><p>Combustion power generation is still the main way of lignite utilization, but lignite combustion will produce a lot of toxic gases, so how to make lignite clean utilization has become an urgent problem to be solved. Hydrogen is an environmentally friendly, zero-carbon emission clean energy because microorganisms can degrade brown coal to produce hydrogen. Therefore, in this experiment, the anaerobic hydrogen production experiment of lignite was carried out, and the influence of different concentrations of benzyl alcohol on hydrogen production of lignite was studied. The results showed that the addition of 500 mg/L benzyl alcohol had the most significant effect on the hydrogen production of lignite, and the total hydrogen production reached 1.70 mL/g, which was 47.83% higher than that of the blank group. The addition of benzyl alcohol extended the peak time of hydrogen production in lignite fermentation. The peak hydrogen production time of 500 mg/L benzyl alcohol in the middle and late stage was 8 days, 5 days longer than that in the blank group. The peak hydrogen production of 500 mg/L benzyl alcohol in the middle and late stage was 0.11 mL/g, which was 2.75 times that of 0.04 mL/g in the blank group. Hydrogen production of lignite is mainly produced by acetic acid and propionic acid fermentation, which is different from butyric acid metabolic pathway of biomass microbial transformation such as crop straw and kitchen waste. This also provides a new way and theoretical basis for the fermentation of lignite to produce hydrogen.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of UV-C Irradiation on Growth, Photosynthetic Pigments, and Lipid Profile of Chlorella sorokiniana. 紫外线-C 照射对小球藻生长、光合色素和脂质的影响
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2024-10-02 DOI: 10.1007/s12010-024-05061-8
Pinky Dotaniya, Rajnandinee Sharma, G P Singh, Shikha Gupta
{"title":"Effect of UV-C Irradiation on Growth, Photosynthetic Pigments, and Lipid Profile of Chlorella sorokiniana.","authors":"Pinky Dotaniya, Rajnandinee Sharma, G P Singh, Shikha Gupta","doi":"10.1007/s12010-024-05061-8","DOIUrl":"https://doi.org/10.1007/s12010-024-05061-8","url":null,"abstract":"<p><p>Chlorella sorokiniana holds significant industrial relevance owing to its lipid profile. Consequently, the objective of this investigation was to enhance growth, lipid content, and photosynthetic pigment production through the application of UV-C irradiation. The growth parameters of microalgae demonstrated an increase in response to concentration. After 35 days of incubation, cells exposed to UV-C for 8 min produced the most biomass at 2.2 g/l. Additionally, the chlorophyll content demonstrated a comparable pattern, with the highest concentrations of chlorophyll a (4.99 mg/l), chlorophyll b (6.22 mg/l), and total chlorophyll (11.21 mg/l) observed in cells incubated for 35 days and exposed to UV-C for 8 min. The lipid profile, nevertheless, demonstrated minor fluctuations. Specifically, the relative abundance of frequently occurring lipid compounds was found to be greater in cells treated with UV-C compared to the control group, and the most significant increase was obtained in 15-day culture exposed to UV-C for 8 min. However, after 35 days of incubation, this abundance decreased in cells exposed to UV-C for more than 4 min. Additionally, the observation of specific lipid compounds presented solely in cells obtained from algal cultures treated with UV-C was made. Consequently, drawing from the results obtained in the current investigation, it is possible to deduce that UV-C can be utilised to augment the overall development and yield of significant metabolites in microalgae. Furthermore, these microalgae can be converted into single-cell bioreactors to facilitate the production of lipids utilised in a variety of applications, a process that could be refined to cater to industrial demands.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DKN-01 Suppresses Gastric Cancer Progression Through Activating cGAS-STING Pathway to Block Macrophage M2 Polarization. DKN-01 通过激活 cGAS-STING 通路阻断巨噬细胞 M2 极化抑制胃癌进展
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2024-10-01 DOI: 10.1007/s12010-024-05073-4
Xiaohuan Yang, Yingying Qi, Sisi Wang
{"title":"DKN-01 Suppresses Gastric Cancer Progression Through Activating cGAS-STING Pathway to Block Macrophage M2 Polarization.","authors":"Xiaohuan Yang, Yingying Qi, Sisi Wang","doi":"10.1007/s12010-024-05073-4","DOIUrl":"https://doi.org/10.1007/s12010-024-05073-4","url":null,"abstract":"<p><p>Dickkopf-1 (DKK1) is a secretory antagonist that can bind with the Wnt coreceptor to desensitize cells to canonical Wnt ligands. DKN-01 is a specific antibody targeting secreted DKK1, which has been investigated as a monotherapy or combination therapy for various malignant tumors, including gastric cancer (GC). Tumor-associated macrophages (TAMs) with high plasticity usually present M2 phenotype, which can promote tumor progression. The aim of this study was to investigate the effect of DKN-01 on macrophage polarization in GC and the underlying molecular mechanism. To ascertain the effect of DKN-01 on GC tumor growth, we established a tumor-bearing mouse model and found that DKN-01 treatment suppressed tumor growth efficiently. Through RNA-seq and pathway enrichment analysis, we identified that the differentially expressed genes after DKN-01 treatment are associated with tumor immune-related pathways. Macrophage polarization was assessed using immunohistochemistry and quantitative real-time polymerase chain reaction. DKN-01 and knockdown of DKK1 promoted M1 polarization and inhibited M2 polarization of macrophages, while DKK1 overexpression got the opposite results. Moreover, DKN-01 activated the cGAS/STING pathway, while the inactivation of cGAS-STING pathway using RU.521 reversed the inhibition of tumor growth in vivo and macrophage M2 polarization caused by DKN-01. This study reveals that DKN-01 suppresses GC tumor growth through activating cGAS-STING pathway to block macrophage M2 polarization.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RETRACTED ARTICLE: Chitosan/Pectin Nanoparticles Encapsulated with Echinacea pallida: a Focus on Antibacterial and Antibiofilm Activity Against Multidrug-Resistant Staphylococcus aureus. 撤稿文章:用紫锥菊包裹的壳聚糖/果胶纳米颗粒:针对耐多药金黄色葡萄球菌的抗菌和抗生物膜活性研究
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2024-10-01 Epub Date: 2023-09-01 DOI: 10.1007/s12010-023-04709-1
Ghazal Ghajari, Rana Hussein Naser, Renzon Daniel Cosme Pecho, Farah Alhili, Tohid Piri-Gharaghie
{"title":"RETRACTED ARTICLE: Chitosan/Pectin Nanoparticles Encapsulated with Echinacea pallida: a Focus on Antibacterial and Antibiofilm Activity Against Multidrug-Resistant Staphylococcus aureus.","authors":"Ghazal Ghajari, Rana Hussein Naser, Renzon Daniel Cosme Pecho, Farah Alhili, Tohid Piri-Gharaghie","doi":"10.1007/s12010-023-04709-1","DOIUrl":"10.1007/s12010-023-04709-1","url":null,"abstract":"","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":"7555"},"PeriodicalIF":3.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10129652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction Note: A Review on Green Synthesis, Characterization and Anticancer Application of Metallic Nanoparticles. 撤稿说明:金属纳米粒子的绿色合成、表征和抗癌应用综述。
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2024-10-01 DOI: 10.1007/s12010-024-05058-3
Piyush Kumar Thakur, Varsha Verma
{"title":"Retraction Note: A Review on Green Synthesis, Characterization and Anticancer Application of Metallic Nanoparticles.","authors":"Piyush Kumar Thakur, Varsha Verma","doi":"10.1007/s12010-024-05058-3","DOIUrl":"10.1007/s12010-024-05058-3","url":null,"abstract":"","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":"7554"},"PeriodicalIF":3.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LncRNA-SNHG16 Protects Against Oxidative Stress-Induced Vascular Endothelial Cell Injury in Cardiovascular Diseases by Regulating the miR-23a-3p-GLS-Glutamine Metabolism Axis. LncRNA-SNHG16通过调控miR-23a-3p-GLS-谷氨酰胺代谢轴防止氧化应激诱导的心血管疾病血管内皮细胞损伤
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2024-10-01 DOI: 10.1007/s12010-024-05077-0
Yang Wang, Chengxin Zhang, Zhuang Liu, Xiaotian Gao, Shenglin Ge
{"title":"LncRNA-SNHG16 Protects Against Oxidative Stress-Induced Vascular Endothelial Cell Injury in Cardiovascular Diseases by Regulating the miR-23a-3p-GLS-Glutamine Metabolism Axis.","authors":"Yang Wang, Chengxin Zhang, Zhuang Liu, Xiaotian Gao, Shenglin Ge","doi":"10.1007/s12010-024-05077-0","DOIUrl":"https://doi.org/10.1007/s12010-024-05077-0","url":null,"abstract":"<p><p>Cardiovascular diseases are disorders of the heart and vascular system that cause high mortality rates worldwide. Vascular endothelial cell (VEC) injury caused by oxidative stress (OS) is an important event in the development of various cardiovascular diseases, including ischemic heart disease. This study aimed to investigate the critical roles and molecular mechanisms of long non-coding RNA (lncRNA) SNHG16 in regulating vascular endothelial cell injury under oxidative stress. We demonstrated that SNHG16 was significantly downregulated and miRNA-23a-3p was notably induced in human vascular endothelial cells under OS. Overexpressing SNHG16 or silencing miR-23a-3p effectively mitigated the OS-induced VEC injury. Additionally, glutamine metabolism of VECs was suppressed under OS. SNHG16 protected the OS-suppressed glutamine metabolism, while miR-23a-3p functioned oppositely in VECs. Furthermore, SNHG16 downregulated miR-23a-3p by sponging miR-23a-3p, which direct targeted the glutamine metabolism enzyme, GLS. Finally, restoring miR-23a-3p in SNHG16-overexpressing VECs successfully reversed the protective effect of SNHG16 on vascular endothelial cell injury under OS. In summary, our results revealed the roles and molecular mechanisms of the SNHG16-mediated protection against VEC injury under OS by modulating the miR-23a-3p-GLS pathway.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pan-cancer Comprehensive Analysis Identified EGFR as a Potential Biomarker for Multiple Tumor Types. 泛癌症综合分析发现表皮生长因子受体是多种肿瘤类型的潜在生物标记物
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2024-10-01 DOI: 10.1007/s12010-024-05060-9
Shichao Liu, Muzhi Li, YiTong Liu, RenYi Geng, Jing Ji, Rui Zhang
{"title":"Pan-cancer Comprehensive Analysis Identified EGFR as a Potential Biomarker for Multiple Tumor Types.","authors":"Shichao Liu, Muzhi Li, YiTong Liu, RenYi Geng, Jing Ji, Rui Zhang","doi":"10.1007/s12010-024-05060-9","DOIUrl":"https://doi.org/10.1007/s12010-024-05060-9","url":null,"abstract":"<p><p>The epidermal growth factor receptor (EGFR) has been extensively studied for its critical role in the development and progression of various malignancies. In this comprehensive pan-cancer analysis, we investigated the potential of EGFR as a biomarker across multiple tumor types; a comprehensive analysis of EGFR gene mutation and copy number variation was conducted using cBioPortal and other tools. Utilizing multi-omics datasets from The Cancer Genome Atlas (TCGA), we analyzed EGFR's expression patterns, prognostic implications, genetic mutations, and molecular interactions in different cancers. Our findings revealed frequent dysregulation of EGFR in several tumor types, including lung cancers and glioblastoma multiforme. High EGFR expression was consistently associated with poor clinical outcomes, such as reduced overall survival, disease-free survival, and progression-free survival. Genetic alteration analysis indicated a high frequency of EGFR mutations and copy number variations, particularly in glioblastoma multiforme. Additionally, our study suggests a complex relationship between EGFR expression and cancer-associated fibroblast infiltration, which may contribute to an immunosuppressive tumor microenvironment. These findings underscore the clinical relevance of EGFR as a prognostic biomarker and therapeutic target, emphasizing the need for further research and the development of targeted therapies to enhance patient outcomes in cancers with EGFR alterations. The co-expression network of EGFR with genes and proteins involved in cell cycle regulation and mitotic control provided insights into the molecular mechanisms of oncogenesis.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Antarctic Endo-Polygalacturonase for Pectin Extraction and Vegetal Tissue Maceration at Mild Temperatures. 用于在低温下提取果胶和浸渍蔬菜组织的新型南极内切聚半乳糖醛酸酶
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2024-10-01 DOI: 10.1007/s12010-024-05069-0
Brenda Bezus, Juan Carlos Contreras Esquivel, Sebastián Cavalitto, Ivana Cavello
{"title":"Novel Antarctic Endo-Polygalacturonase for Pectin Extraction and Vegetal Tissue Maceration at Mild Temperatures.","authors":"Brenda Bezus, Juan Carlos Contreras Esquivel, Sebastián Cavalitto, Ivana Cavello","doi":"10.1007/s12010-024-05069-0","DOIUrl":"https://doi.org/10.1007/s12010-024-05069-0","url":null,"abstract":"<p><p>The aim of the present work was to partially purify and characterize an Antarctic polygalacturonase and to determine the enzyme's potential in pectin extraction and vegetal maceration at 20 °C. Polygalacturonase was purified by chromatography to obtain an enzymatic preparation of specific activity 30.3 U.mg<sup>-1</sup>. Optimal conditions for the polygalacturonase activity were 45 °C and pH 5.0-6.0, and the activation energy for the reaction was 41.8 kJ.mol<sup>-1</sup>. Of the enzyme activity, 100% was retained after 3 h at 40 °C. The enzyme was remarkably stable for an hour over a wide range of pH (2.0-12.0). Polygalacturonase activity was slightly reduced in the presence of Ca<sup>+2</sup>, Fe<sup>+3</sup>, K<sup>+</sup>, Mn<sup>+2</sup>, and Zn<sup>+2</sup>, whereas Hg<sup>+2</sup> reduced the activity by 60%, suggesting a thiol-dependent catalysis. The apparent molecular weight of the enzyme was 33 kDa. The kinetic constants evaluated against polygalacturonic acid were 0.17 mg.ml<sup>-1</sup> (K<sub>m</sub>), 480 s<sup>-1</sup> (K<sub>cat</sub>), and 7.9 µmol.mg<sup>-1</sup>.min<sup>-1</sup> (V<sub>max</sub>). The enzyme was active against different pectic substrates. Thin-layer chromatography revealed an endo-mechanism of action. Polygalacturonase digested lime pomace to aid the extraction of high-methoxylated pectin at 20 °C and increased the vegetal maceration of Capsicum annuum by 24% over the control values.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信