Applied Biochemistry and Biotechnology最新文献

筛选
英文 中文
Quinoline: A Novel Solution for Next-Generation Pesticides, Herbicides, and Fertilizers. 喹啉:新一代农药、除草剂和肥料的新解决方案。
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2025-01-04 DOI: 10.1007/s12010-024-05164-2
Shahid Ullah Khan, Taufiq Nawaz, Osama Alam, Dilfaraz Khan, Shah Fahad, Shah Saud, Kun Lu
{"title":"Quinoline: A Novel Solution for Next-Generation Pesticides, Herbicides, and Fertilizers.","authors":"Shahid Ullah Khan, Taufiq Nawaz, Osama Alam, Dilfaraz Khan, Shah Fahad, Shah Saud, Kun Lu","doi":"10.1007/s12010-024-05164-2","DOIUrl":"https://doi.org/10.1007/s12010-024-05164-2","url":null,"abstract":"<p><p>Quinoline is a nitrogen-containing heterocycle compound widely used in the medical industry for its pharmacological properties, such as its antimalarial, antimicrobial, antiparasitic, anti-inflammatory, and anticancer activities. Beyond its medical significance, quinoline shows promising applications in agriculture as a safe and effective pesticide, herbicide, and fertilizer. This review explores the evolution of quinoline research, beginning with its history and synthesis and transitioning to its biological activities and their relevance in agriculture. It then highlights the potential applications of quinoline in modern agriculture, such as pesticides, herbicides, and fertilizers, for increasing crop yields and resilience while reducing crop waste. Moreover, it discusses formulation strategies that can enhance the efficacy of quinoline. Finally, the review addresses potential challenges, such as toxicity and environmental impact, underscoring the need for further research to harness quinoline's full potential in sustainable agriculture.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142926162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Benzo[d]thiazol-2-Amine Derivatives, Synthesis, and Molecular Docking Insights Potential Anticancer Agents Targeting HER Enzyme and DNA. 以HER酶和DNA为靶点的苯并噻唑-2-胺衍生物、合成及分子对接研究
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2025-01-03 DOI: 10.1007/s12010-024-05149-1
Ammar M K Al-Azzawi, Ekhlas Abdallah Hassan
{"title":"Exploring Benzo[d]thiazol-2-Amine Derivatives, Synthesis, and Molecular Docking Insights Potential Anticancer Agents Targeting HER Enzyme and DNA.","authors":"Ammar M K Al-Azzawi, Ekhlas Abdallah Hassan","doi":"10.1007/s12010-024-05149-1","DOIUrl":"https://doi.org/10.1007/s12010-024-05149-1","url":null,"abstract":"<p><p>The synthesis and characterization of benzo[d]thiazol-2-amine derivatives, which were prepared by reacting benzothiazole with para-aminobenzophenone in ethanol, supplemented with glacial acetic acid. Subsequently, compound (2) was synthesized from compound (1) using NaNO<sub>2</sub>, H<sub>3</sub>PO<sub>4</sub>, and HNO<sub>3</sub> in a water-based solvent, resulting in 2-hydroxy-1-naphthaldehyde. Another derivative, compound (3), was synthesized by reacting compound (1) with vanillin under similar conditions. Structural characterization involved IR spectroscopy and melting point determination, while molecular properties were estimated to assess drug-like characteristics. The main point of this study is to synthesize and research drug-like characteristics, biological activities, and docking studies. Molecular docking studies (MDS) were conducted using AutoDock Vina to evaluate the binding affinity of compounds 1, 2, and 3 with the enzyme Human Epidermal growth factor receptor (HER). The docking simulations aimed to elucidate drug-DNA interactions, focusing on hydrogen bonding, hydrophobic interactions, and binding energies. The compounds' conformations were analyzed to identify their potential binding modes within the DNA groove. Compounds 2 and 3 exhibited higher binding affinities to the HER enzyme compared to compound 1, with compound 2 showing the highest affinity docking scores of - 10.4, - 9.9, and - 9.8 kcal/mol for the top three poses. These results suggest that compounds 2 and 3 could potentially interact more effectively with the enzyme and DNA, attributed to their structural features and interaction profiles. Synthesized and characterized benzo[d]thiazol-2-amine derivatives and evaluated their biological activities against gram-positive and gram-negative bacteria. The compounds demonstrated diverse biological activities, likely due to the various functional groups within their 4- to 5-ring structures. Molecular docking studies indicated that compounds 2 and 3 have promising potential as cancer therapy candidates, showing strong binding affinities to the HER enzyme and effective interactions with DNA.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142918925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eco-friendly Synthesis of Iron Oxide Nanoparticles Using Parietaria alsinifolia Extracts and Evaluation of Biological Applications. 利用荷叶提取物环保合成氧化铁纳米颗粒及其生物应用评价。
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2025-01-03 DOI: 10.1007/s12010-024-05151-7
Zakir Ullah, Javed Iqbal, Banzeer Ahsan Abbasi, Farhat Gul, Sarfaraz Ali, Sobia Kanwal, Reem M Aljowaie, Ghulam Murtaza, Rashid Iqbal, Tariq Mahmood
{"title":"Eco-friendly Synthesis of Iron Oxide Nanoparticles Using Parietaria alsinifolia Extracts and Evaluation of Biological Applications.","authors":"Zakir Ullah, Javed Iqbal, Banzeer Ahsan Abbasi, Farhat Gul, Sarfaraz Ali, Sobia Kanwal, Reem M Aljowaie, Ghulam Murtaza, Rashid Iqbal, Tariq Mahmood","doi":"10.1007/s12010-024-05151-7","DOIUrl":"https://doi.org/10.1007/s12010-024-05151-7","url":null,"abstract":"<p><p>The current research was conducted to synthesize Parietaria alsinifolia-mediated iron oxide nanoparticles (P.A@FeONPs) using the green and eco-friendly protocol. The biosynthesized P.A@FeONPs were characterized using various approaches like UVs, FTIR, SEM, EDX, and DLS. The mean crystallite size was calculated to be ~ 21.48 nm using the Debye-Scherrer equation. Further, various in vitro biological assays were performed to analyze the therapeutic potentials of FeONPs. 2,2-Diphenyl-1-picrylhydrazy (DPPH) antioxidant activity was performed to reveal the DPPH radical scavenging potential of P.A@FeONPs and was calculated as 72%. Similarly, the total reducing power was determined as 65.45 ± 1.77%. In addition, P.A@FeONPs exhibited a significant total antioxidant capacity of 87 ± 4.8%. Antibacterial and antifungal assays were performed using the disc diffusion method. Among the different bacterial strains accession (EFB-10-2023 M.B), Rhodococcus jostii has shown the highest zone of inhibition (23.9 mm at 1000 μg/mL), while Escherichia coli displayed a 22.65 mm zone of inhibition at (1000 μg/mL). Similarly, Aspergillus niger exhibited a substantial zone of inhibition (28.75 mm). A brine shrimp cytotoxicity assay revealed the cytotoxicity potential (LC<sub>50</sub> 244.92 μg/mL). P.A@FeONPs were also tested against red blood cells, HEK-293, and VERO cell lines (< 200 μg/mL) to validate their biocompatibility. An alpha-amylase inhibition assay demonstrated 68.66% inhibition and substantial cytotoxicity against Hep-2 liver cancer cells (IC<sub>50</sub> 100 μg/mL). In conclusion, P.A@FeONPs have shown significant bioactivities. In the future, we recommend other biological and catalytic activities using different animal models to explore its potential further.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142918932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cloning, Heterologous Expression, and Biochemical Characterization of a Novel Glycoside Hydrolase 16 Family Enzyme for Biorefinery of Furcellaria lumbricalis. 糠秕菌生物精制糖苷水解酶16家族酶的克隆、异源表达及生化特性研究。
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2025-01-02 DOI: 10.1007/s12010-024-05152-6
Limin Ning, Yanshang Wei, Zilong Guo
{"title":"Cloning, Heterologous Expression, and Biochemical Characterization of a Novel Glycoside Hydrolase 16 Family Enzyme for Biorefinery of Furcellaria lumbricalis.","authors":"Limin Ning, Yanshang Wei, Zilong Guo","doi":"10.1007/s12010-024-05152-6","DOIUrl":"https://doi.org/10.1007/s12010-024-05152-6","url":null,"abstract":"<p><p>Carrageenan has strong structural heterogeneity, resulting in the production of several hybridized forms in nature. Furcellaran is a typical hybrid type of carrageenan that includes both κ-carrageenan and β-carrageenan motifs in its structure. The discovery and characterization of a novel furcellaranase is of great significance for investigating and determining the structures of carrageenan. Herein, a new GH 16 enzyme CeFurA, with furcellaran and porphyran degrading activities, was cloned, and it included 350 amino acid residues and has a predicted theoretical molecular weight of 40.45 kDa. The enzyme displayed the highest biological activity (824.64 U/mg) on furcellaran at 35 °C and pH 9.0. Notably, CeFurA has excellent temperature stability throughout the wide 25 to 40 °C temperature range. It is useful and promising to efficient prepare hybrid bk-carrageenan oligosaccharides and elucidate the fine structure of the hybrid polysaccharide and oligosaccharides. TLC and ESI-MS indicate that CeFurA, as an endo-type enzyme, can specifically act on DA-Gβ1 → 4DA-G and DA-G4Sβ1 → 4DA-G4S glycosidic linkages within the furcellaran, producing disaccharides, tetrasaccharides, and hexasaccharides as the primary products. The CeFurA exhibited a sandwich-like structure according to structural modeling, which contains an embedded catalytic chamber formed by the β folded sheets placed in a reversing manner by acting on the internal DA-G4Sβ1 → 4DA-G4S glycosidic link. These exceptional properties make CeFurA a powerful tool for studying the heterogeneity of carrageenan structures and producing COS in the industry.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142918847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
WTAP Promotes Atherosclerosis by Inducing Macrophage Pyroptosis and M1 Polarization through Upregulating NLRP3. WTAP通过上调NLRP3诱导巨噬细胞凋亡和M1极化促进动脉粥样硬化。
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2025-01-02 DOI: 10.1007/s12010-024-05106-y
Xing Luo, Chaogui He, Bo Yang, Shuheng Yin, Ke Li
{"title":"WTAP Promotes Atherosclerosis by Inducing Macrophage Pyroptosis and M1 Polarization through Upregulating NLRP3.","authors":"Xing Luo, Chaogui He, Bo Yang, Shuheng Yin, Ke Li","doi":"10.1007/s12010-024-05106-y","DOIUrl":"https://doi.org/10.1007/s12010-024-05106-y","url":null,"abstract":"<p><p>The study was designed to investigate the impact of N6-methyladenosine (m6A) writer Wilms tumor 1-associated protein (WTAP) on the progression of atherosclerosis (AS) and to further elucidate its possible regulatory mechanism. The m6A levels and WTAP expressions were initially assessed through RIP, qRT-PCR, and western blotting. An in vitro model of AS was constructed by ox-LDL treatment in RAW264.7 cells. Next, the impact of WTAP on macrophage pyroptosis and M1 polarization was evaluated. The relationship between WTAP and NLRP3 was then investigated using m6A modification quantification and RIP-qPCR assay. To investigate the effect of WTAP on AS development in vivo, we created an ApoE<sup>-/-</sup>mouse model of AS by feeding high-fat diet (HFD). Furthermore, the influence of WTAP on macrophage pyroptosis and M1 polarization through NLRP3 was explored by NLRP3 overexpression AAV injection. Here, we found that WTAP was significantly upregulated in peripheral blood mononuclear cells (PBMCs) from AS patients, accompanied by increased total m6A methylation levels. The silencing of WTAP suppressed macrophage pyroptosis and M1 polarization induced by ox-LDL and also ameliorated aortic root lesion damage in AS mice. Mechanistically, m6A modification mediated by WTAP enhanced NLRP3 mRNA stabilization, thereby upregulating NLRP3 expression. Overexpression of NLRP3 was found to enhance macrophage pyroptosis and M1 polarization, contributing to the progression of AS. In conclusion, our findings suggest that WTAP knockdown mitigated AS progression by modulating NLRP3 in an m6A-dependent manner. Our study proposes that targeting WTAP could be a potential preventive and therapeutic strategy for AS patients.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142918991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isolation, Identification, and Fermentation Optimization of Phytase-Producing Bacteria and Their Effects on Soybean Seedlings. 植酸酶产菌的分离、鉴定、发酵优化及其对大豆幼苗的影响
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2025-01-02 DOI: 10.1007/s12010-024-05154-4
Limin Zhang, Ziwei Song, Jingyuan Guo, Wenjia Liu, Jie Li, Qingxin Meng, Jixian Mo
{"title":"Isolation, Identification, and Fermentation Optimization of Phytase-Producing Bacteria and Their Effects on Soybean Seedlings.","authors":"Limin Zhang, Ziwei Song, Jingyuan Guo, Wenjia Liu, Jie Li, Qingxin Meng, Jixian Mo","doi":"10.1007/s12010-024-05154-4","DOIUrl":"https://doi.org/10.1007/s12010-024-05154-4","url":null,"abstract":"<p><p>Phosphorus in soil mostly exists in complex compounds such as phytic acid, which reduces the effectiveness of phosphorus and limits agricultural production. Phytase has the activity of hydrolyzing phytate into phosphate. The mineralization of phytate in soil by phytase secreted by microorganisms is an effective way to improve the utilization rate of phytate. This study isolated a high-yield phytase strain, identified as Pseudomonas by 16S rDNA and named Pseudomonas sp. S3-10. The fermentation medium composition and conditions were optimized using the single-factor method, Plackett-Burman design (PBD), and response surface methodology (RSM). The results showed that cane molasses, MgCl<sub>2</sub>, and temperature significantly affected the fermentation biomass of the bacterium. The optimal fermentation conditions were cane molasses and MgCl<sub>2</sub> concentrations of 61.80 g/L and 5.94 g/L, respectively, at 34.4 °C. Compared with the unoptimized fermentation conditions, the maximum biomass increased by 160.17 ± 6.26% under the optimized fermentation conditions, reaching 9.13 ± 0.09 × 10<sup>9</sup> CFU/mL. The pot experiment results showed that Pseudomonas sp. S3-10 has a significant promoting effect on soybean growth. The strain increased the fresh weight and length of soybean seedlings by 112.92 ± 28.41% and 74.02 ± 3.24%, respectively, and increased the phytase activity in the soil and available phosphorus concentration in the plant rhizosphere by 388.15 ± 24.24% and 365.05 ± 91.96%, respectively. This study provided a high-yield phytase strain and its optimal fermentation conditions. The bacterium has significant plant growth-promoting effects and can be used as a new type of biological fertilizer, which is of great significance for reducing phosphorus fertilizer usage, improving phosphorus utilization efficiency, and protecting the ecological environment in agricultural production.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142918985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Screening of Plant UDP-Glycosyltransferases for Betanin Production in Yeast. 酵母生产甜菜素用植物糖苷转移酶的筛选。
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2025-01-02 DOI: 10.1007/s12010-024-05100-4
Christiane Glitz, Jane Dannow Dyekjær, Dovydas Vaitkus, Mahsa Babaei, Ditte Hededam Welner, Irina Borodina
{"title":"Screening of Plant UDP-Glycosyltransferases for Betanin Production in Yeast.","authors":"Christiane Glitz, Jane Dannow Dyekjær, Dovydas Vaitkus, Mahsa Babaei, Ditte Hededam Welner, Irina Borodina","doi":"10.1007/s12010-024-05100-4","DOIUrl":"https://doi.org/10.1007/s12010-024-05100-4","url":null,"abstract":"<p><p>To cover the rising demand for natural food dyes, new sources and production methods are needed. Microbial fermentation of nature-identical colours, such as the red pigment betanin, has the potential to be a cost-efficient alternative to plant extraction. The last step of betanin production is catalysed by a UDP-glycosyltransferase (UGT). To find a high-performing UGT, we screened 27 UGTs from different plant species and tested their ability to produce betanin in vivo in Saccharomyces cerevisiae. We identified two new UGTs likely involved in the betanin synthesis in the plant they derive from: CqGT2 (UGT73A37) from Chenopodium quinoa and BgGT2 (UGT92X1) from Bougainvillea glabra. The betanin-producing UGTs were also tested in Yarrowia lipolytica, where CqGT2 was the best-performing glycosyltransferase for betanin production. While it has previously been shown that the UGTs can glycosylate either betanidin or cyclo-DOPA to ultimately form betanin, the molecular mechanism behind the preference for the acceptor molecule has not been elucidated. Therefore, we performed in silico structural analysis to characterise the betanin-producing UGTs further, particularly by looking into their binding mechanism. The docking model suggested that a smaller binding site found in some UGTs only allows glycosylation of cDOPA, while a wider binding site allows glycosylation of both cyclo-DOPA and betanidin.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142918988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ReV as a Novel S. cerevisiae-Derived Drug Carrier to Enhance Anticancer Therapy through Daunorubicin Delivery. ReV作为一种新型酿酒葡萄球菌衍生的药物载体,通过柔红霉素输送增强抗癌治疗。
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2024-12-30 DOI: 10.1007/s12010-024-05177-x
Yunyoung Cho, Jiwoo Lim, Yang-Hoon Kim, Jiho Min
{"title":"ReV as a Novel S. cerevisiae-Derived Drug Carrier to Enhance Anticancer Therapy through Daunorubicin Delivery.","authors":"Yunyoung Cho, Jiwoo Lim, Yang-Hoon Kim, Jiho Min","doi":"10.1007/s12010-024-05177-x","DOIUrl":"https://doi.org/10.1007/s12010-024-05177-x","url":null,"abstract":"<p><p>This study explores the potential of vacuoles derived from Saccharomyces cerevisiae (S. cerevisiae) as a novel form of drug carrier, specifically focusing on their application in enhancing the delivery of the chemotherapeutic agent Daunorubicin (DNR). We isolated and reassembled these vacuoles, referred to as Reassembled Vacuoles (ReV), aiming to overcome the challenges of drug degradation caused by hydrolytic enzymes within traditional vacuoles. ReV encapsulating DNR were tested against HL-60 cells, a model for acute myeloid leukemia, to evaluate their therapeutic impact. Through various analyses, including Nanoparticle tracking analysis (NTA) and Field-emission electron scanning microscope (FE-SEM), we characterized the properties of ReV. Our findings revealed that ReV exhibited superior stability, drug release rate, and cytotoxic efficacy compared to normal vacuoles (NorV). Notably, ReV demonstrated a higher apoptosis rate in HL-60 cells, efficient and complete release of DNR within 24 h, and reduced cytotoxic side effects. These results suggest that ReV could represent a new and effective drug delivery system in anticancer therapy, paving the way for more targeted and safer cancer treatment modalities.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142908675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cetyltrimethylammonium Chloride (CTAC) and Its Formulated Mouthwash Reduce the Infectivity of Streptococcus mutans and Candida albicans in Mono and Dual State. 十六烷基三甲基氯化铵(CTAC)及其配方漱口水降低单态和双态变形链球菌和白色念珠菌的传染性。
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2024-12-28 DOI: 10.1007/s12010-024-05119-7
Ravichellam Sangavi, Ravi Jothi, Nambiraman Malligarjunan, Veerapandian Raja, Shunmugiah Karutha Pandian, Shanmugaraj Gowrishankar
{"title":"Cetyltrimethylammonium Chloride (CTAC) and Its Formulated Mouthwash Reduce the Infectivity of Streptococcus mutans and Candida albicans in Mono and Dual State.","authors":"Ravichellam Sangavi, Ravi Jothi, Nambiraman Malligarjunan, Veerapandian Raja, Shunmugiah Karutha Pandian, Shanmugaraj Gowrishankar","doi":"10.1007/s12010-024-05119-7","DOIUrl":"https://doi.org/10.1007/s12010-024-05119-7","url":null,"abstract":"<p><p>Early childhood caries (ECC), a severe form of dental caries, is exacerbated by the synergistic interaction between Streptococcus mutans and Candida albicans, leading to greater disease severity than their individual effects. This underscores the need for more targeted and potent therapeutic alternatives. Given the promising anti-infective properties of quaternary ammonium surfactants (QAS), this study explores the microbicidal properties of one such QAS, cetyltrimethylammonium chloride (CTAC), against both individual- and dual-species cultures of S. mutans and C. albicans for effective ECC treatment. Initially, the minimal inhibitory concentrations (MICs) of CTAC were determined to range from 4 to 8 µg/mL against S. mutans, C. albicans, and dual-species cultures. Time-kill kinetics, assessed via spot assays and spectrometry, demonstrated that CTAC completely eradicated both individual- and dual-species cultures within 30 min of exposure. Furthermore, at sub-MIC concentrations, CTAC effectively reduced biofilm formation and virulence traits in S. mutans (including acidogenicity and aciduricity) and C. albicans (including yeast-to-hyphal transition and filamentation). To explore therapeutic application, a mouthwash containing CTAC was formulated. The results showed that the formulated CTAC mouthwash was as effective at eradicating pathogens as a commercially available mouthwash containing 0.075% cetylpyridinium chloride (CPC). Moreover, the CTAC mouthwash maintained stable physicochemical characteristics and antimicrobial activity over 4 weeks. It exhibited rapid killing activity against pathogens, achieving efficacy within just 2 min of exposure. Fluorescence microscopy and SEM micrographs confirmed the strong biofilm eradication potential of the CTAC mouthwash. The non-toxic nature of the formulated mouthwash was validated using human buccal epithelial cells, and in vivo studies further demonstrated that CTAC mouthwash significantly reduced bacterial and fungal loads in Galleria mellonella. Overall, the findings of this study highlight the potential application of QAS-CTAC in the treatment of ECC.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142891297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrosion Characteristics of Typical Gangue Minerals in Biometallurgical Systems. 生物冶金系统中典型脉石矿物的腐蚀特性。
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2024-12-26 DOI: 10.1007/s12010-024-05128-6
Jiafeng Li, Linlin Tong, Jianing Xu, Qiao Chen, Hongying Yang
{"title":"Corrosion Characteristics of Typical Gangue Minerals in Biometallurgical Systems.","authors":"Jiafeng Li, Linlin Tong, Jianing Xu, Qiao Chen, Hongying Yang","doi":"10.1007/s12010-024-05128-6","DOIUrl":"https://doi.org/10.1007/s12010-024-05128-6","url":null,"abstract":"<p><p>Electrochemical and shake flask tests were used to examine the corrosion characteristics of typical gangue minerals in biometallurgical systems and their impact on microbial communities. The results show that the solubility order of the three gangue minerals is feldspar, mica, and quartz in descending order. Their corrosion processes are mainly controlled by cathodic electron-donating processes. They are subjected to triple resistance, which is defined as solution-resistant, colloidal silica passivation, and iron precipitation (ferric hydroxide or jarosite passivation). Fe<sup>3+</sup> and microorganisms both greatly improve the corrosion capacity of the system for the three gangue minerals. The community diversity may rise to 9.3, 8.6, and 4.4 times that of the initial HQ0211 strain, respectively, in the presence of feldspar, mica, and quartz.. The proportions of autotrophic microorganisms Leptospirillum, Sulfobacillus, and Acidiplasma decreased significantly, and the mixed trophic archaeon Ferroplasma and heterotrophic archaeon Cuniculiplasma became the dominant microorganisms in the system. Finally, the dissolution mechanism of gangue minerals in biometallurgical systems is discussed. The results enrich the theory of the gangue mineral corrosion process, which can lay a foundation for the effective regulation of biometallurgical processes.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142891300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信