rhGALNS酶在生理缓冲液中的稳定性:对缓释的影响。

IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Samuel Ruesing, Samuel Stealey, Qi Gan, Linda Winter, Adriana M Montaño, Silviya P Zustiak
{"title":"rhGALNS酶在生理缓冲液中的稳定性:对缓释的影响。","authors":"Samuel Ruesing, Samuel Stealey, Qi Gan, Linda Winter, Adriana M Montaño, Silviya P Zustiak","doi":"10.1007/s12010-025-05266-5","DOIUrl":null,"url":null,"abstract":"<p><p>Morquio A syndrome is a rare genetic disorder where deficiency in N-acetylgalactosamine-6-sulfate sulfatase (GALNS) enzyme prevents breakdown of glycosaminoglycans (GAGs). Recombinant human GALNS (rhGALNS) is currently administered by intravenous infusion, but the treatment is costly and time-consuming and provides limited efficacy. Patient quality of life could be improved by an injectable sustained rhGALNS release device that would eliminate weekly multi-hour infusions. Polyethylene glycol (PEG) hydrogels can be employed as a hydrophilic, tunable, non-toxic, and biodegradable drug delivery system for the sustained release of rhGALNS, as explored by us previously. Here, we investigated the stability of rhGALNS in various buffers mimicking the in vivo environment that would be encountered by the enzyme, inside of and outside the PEG hydrogels. rhGALNS activity was reduced 85% by reversible inhibition in phosphate-buffered saline (PBS), representing interstitial fluid and plasma. Buffer exchanging into acidic buffer representing the lysosome recovered this loss. However, incubation in PBS for 3 days resulted in an irreversible loss of 85%. There were no significant changes in rhGALNS hydrodynamic radius upon activity loss, suggesting structural integrity. Such activity loss makes sustained delivery impractical without additional stabilization, such as confinement within the hydrogel. rhGALNS activity was retained upon encapsulation, and the average specific activity of rhGALNS released from a hydrogel decreased only 20% over 7 days. These results show that the activity of rhGALNS was better retained within the hydrogel than in buffer alone, potentially enabling sustained release for rhGALNS or other enzymes unstable in physiological conditions with our hydrogel delivery device.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"rhGALNS Enzyme Stability in Physiological Buffers: Implications for Sustained Release.\",\"authors\":\"Samuel Ruesing, Samuel Stealey, Qi Gan, Linda Winter, Adriana M Montaño, Silviya P Zustiak\",\"doi\":\"10.1007/s12010-025-05266-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Morquio A syndrome is a rare genetic disorder where deficiency in N-acetylgalactosamine-6-sulfate sulfatase (GALNS) enzyme prevents breakdown of glycosaminoglycans (GAGs). Recombinant human GALNS (rhGALNS) is currently administered by intravenous infusion, but the treatment is costly and time-consuming and provides limited efficacy. Patient quality of life could be improved by an injectable sustained rhGALNS release device that would eliminate weekly multi-hour infusions. Polyethylene glycol (PEG) hydrogels can be employed as a hydrophilic, tunable, non-toxic, and biodegradable drug delivery system for the sustained release of rhGALNS, as explored by us previously. Here, we investigated the stability of rhGALNS in various buffers mimicking the in vivo environment that would be encountered by the enzyme, inside of and outside the PEG hydrogels. rhGALNS activity was reduced 85% by reversible inhibition in phosphate-buffered saline (PBS), representing interstitial fluid and plasma. Buffer exchanging into acidic buffer representing the lysosome recovered this loss. However, incubation in PBS for 3 days resulted in an irreversible loss of 85%. There were no significant changes in rhGALNS hydrodynamic radius upon activity loss, suggesting structural integrity. Such activity loss makes sustained delivery impractical without additional stabilization, such as confinement within the hydrogel. rhGALNS activity was retained upon encapsulation, and the average specific activity of rhGALNS released from a hydrogel decreased only 20% over 7 days. These results show that the activity of rhGALNS was better retained within the hydrogel than in buffer alone, potentially enabling sustained release for rhGALNS or other enzymes unstable in physiological conditions with our hydrogel delivery device.</p>\",\"PeriodicalId\":465,\"journal\":{\"name\":\"Applied Biochemistry and Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biochemistry and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12010-025-05266-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-025-05266-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Morquio A综合征是一种罕见的遗传性疾病,由于n -乙酰半乳糖胺-6-硫酸盐硫酸酯酶(GALNS)缺乏,导致糖胺聚糖(GAGs)无法分解。重组人GALNS (rhGALNS)目前通过静脉输注给药,但治疗成本高,耗时长,疗效有限。患者的生活质量可以通过注射持续的rhGALNS释放装置来改善,该装置将消除每周数小时的输注。聚乙二醇(PEG)水凝胶可以作为一种亲水、可调、无毒、可生物降解的药物递送系统用于rhGALNS的缓释,正如我们之前所探索的那样。在这里,我们研究了rhGALNS在各种缓冲液中的稳定性,这些缓冲液模拟了酶在PEG水凝胶内外所遇到的体内环境。磷酸盐缓冲盐水(PBS)(代表间质液和血浆)的可逆抑制使rhGALNS活性降低85%。缓冲液交换成酸性缓冲液,表示溶酶体恢复了损失。然而,在PBS中孵育3天导致85%的不可逆损失。活动丧失后,rhGALNS流体动力半径无明显变化,提示结构完整。如果没有额外的稳定,例如水凝胶内的限制,这种活性损失使得持续输送变得不切实际。包封后rhGALNS活性保持不变,从水凝胶中释放的rhGALNS平均比活性在7天内仅下降20%。这些结果表明,与单独在缓冲液中相比,在水凝胶中可以更好地保留rhGALNS的活性,这可能使我们的水凝胶递送装置能够持续释放rhGALNS或其他在生理条件下不稳定的酶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
rhGALNS Enzyme Stability in Physiological Buffers: Implications for Sustained Release.

Morquio A syndrome is a rare genetic disorder where deficiency in N-acetylgalactosamine-6-sulfate sulfatase (GALNS) enzyme prevents breakdown of glycosaminoglycans (GAGs). Recombinant human GALNS (rhGALNS) is currently administered by intravenous infusion, but the treatment is costly and time-consuming and provides limited efficacy. Patient quality of life could be improved by an injectable sustained rhGALNS release device that would eliminate weekly multi-hour infusions. Polyethylene glycol (PEG) hydrogels can be employed as a hydrophilic, tunable, non-toxic, and biodegradable drug delivery system for the sustained release of rhGALNS, as explored by us previously. Here, we investigated the stability of rhGALNS in various buffers mimicking the in vivo environment that would be encountered by the enzyme, inside of and outside the PEG hydrogels. rhGALNS activity was reduced 85% by reversible inhibition in phosphate-buffered saline (PBS), representing interstitial fluid and plasma. Buffer exchanging into acidic buffer representing the lysosome recovered this loss. However, incubation in PBS for 3 days resulted in an irreversible loss of 85%. There were no significant changes in rhGALNS hydrodynamic radius upon activity loss, suggesting structural integrity. Such activity loss makes sustained delivery impractical without additional stabilization, such as confinement within the hydrogel. rhGALNS activity was retained upon encapsulation, and the average specific activity of rhGALNS released from a hydrogel decreased only 20% over 7 days. These results show that the activity of rhGALNS was better retained within the hydrogel than in buffer alone, potentially enabling sustained release for rhGALNS or other enzymes unstable in physiological conditions with our hydrogel delivery device.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Biochemistry and Biotechnology
Applied Biochemistry and Biotechnology 工程技术-生化与分子生物学
CiteScore
5.70
自引率
6.70%
发文量
460
审稿时长
5.3 months
期刊介绍: This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities. In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信