{"title":"TCF4 Promotes Neuroblastoma Proliferation and Inhibits Ferroptosis by Transactivating GPX4 Expression.","authors":"Yingming Wang, Qiang Gao, Xin Chen, Qian Dong, Ruihong Luan, Fujiang Li, Hongting Lu, Xianjun Zhou","doi":"10.1007/s12010-025-05329-7","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroblastoma, an aggressive pediatric malignancy, exhibits aberrant expression of transcription factors implicated in tumor progression. Here, we investigated the functional role of transcription factor 4 (TCF4) in neuroblastoma, focusing on its impact on cellular proliferation and ferroptosis-a regulated form of iron-dependent cell death, and elucidated the underlying molecular mechanism. Firstly, the expressions of TCF4 in neuroblastoma tissues and cell lines were analyzed, and the expressions of TCF4 mRNA and protein were significantly up-regulated. Functional analysis demonstrated that sh-TCF4 could significantly proliferate neuroblastoma cells, which was measured by CCK-8 kit, EdU staining, and clone formation experiments. Concurrently, TCF4 knockdown significantly elevated ROS accumulation and lipid peroxidation levels. Besides, sh-TCF4 decreased the levels of FTH1 and increased the TFR1 expression. Mechanistically, bioinformatic analysis using the JASPAR database predicted TCF4 binding sites within GPX4 promoter, a key ferroptosis regulator. ChIP and dual-luciferase reporter assays confirmed direct TCF4 occupancy and transcriptional activation of GPX4. Rescue experiments further validated the axis, as GPX4 overexpression abrogated the anti-proliferative and pro-ferroptotic effects induced by sh-TCF4. Collectively, the findings revealed TCF4 as a critical promoter of neuroblastoma growth and ferroptosis resistance, acting through direct up-regulation of GPX4. Targeting the TCF4-GPX4 axis may offer a novel therapeutic strategy to enhance ferroptosis sensitivity in neuroblastoma, warranting further preclinical exploration.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-025-05329-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neuroblastoma, an aggressive pediatric malignancy, exhibits aberrant expression of transcription factors implicated in tumor progression. Here, we investigated the functional role of transcription factor 4 (TCF4) in neuroblastoma, focusing on its impact on cellular proliferation and ferroptosis-a regulated form of iron-dependent cell death, and elucidated the underlying molecular mechanism. Firstly, the expressions of TCF4 in neuroblastoma tissues and cell lines were analyzed, and the expressions of TCF4 mRNA and protein were significantly up-regulated. Functional analysis demonstrated that sh-TCF4 could significantly proliferate neuroblastoma cells, which was measured by CCK-8 kit, EdU staining, and clone formation experiments. Concurrently, TCF4 knockdown significantly elevated ROS accumulation and lipid peroxidation levels. Besides, sh-TCF4 decreased the levels of FTH1 and increased the TFR1 expression. Mechanistically, bioinformatic analysis using the JASPAR database predicted TCF4 binding sites within GPX4 promoter, a key ferroptosis regulator. ChIP and dual-luciferase reporter assays confirmed direct TCF4 occupancy and transcriptional activation of GPX4. Rescue experiments further validated the axis, as GPX4 overexpression abrogated the anti-proliferative and pro-ferroptotic effects induced by sh-TCF4. Collectively, the findings revealed TCF4 as a critical promoter of neuroblastoma growth and ferroptosis resistance, acting through direct up-regulation of GPX4. Targeting the TCF4-GPX4 axis may offer a novel therapeutic strategy to enhance ferroptosis sensitivity in neuroblastoma, warranting further preclinical exploration.
期刊介绍:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities.
In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.