Guiping Liu, Xueli Wang, Xiaomeng Su, Shixin Ji, Zelong Ma, Yimeng Gao, Xiangwei Song
{"title":"The Development Potential of AuNPs-Based Lateral Flow Technology Combined with Other Advanced Technologies in POCT.","authors":"Guiping Liu, Xueli Wang, Xiaomeng Su, Shixin Ji, Zelong Ma, Yimeng Gao, Xiangwei Song","doi":"10.1007/s12010-025-05190-8","DOIUrl":"https://doi.org/10.1007/s12010-025-05190-8","url":null,"abstract":"<p><p>Currently, there is a demand for rapid, sensitive, low-cost, portable, and visualized testing technologies for point-of-care testing (POCT). However, most traditional testing methods face challenges such as long testing times, complicated operations, and high costs, limiting their implementation in resource-limited areas and hindering the fulfillment of POCT demands. Lateral flow assay (LFA) has emerged as an ideal detection technique for POCT, particularly when utilizing gold nanoparticles (AuNPs) as labels. This approach not only enables visualization with the naked eye but also reduces the need for expensive reading instruments. The technologies reviewed in this paper encompass integrated detection technology utilizing amplification technique and LFA, integrated detection technology utilizing clustered regularly interspaced short palindromic repeats (CRISPR) system and LFA, the utilization of surface-enhanced Raman spectroscopy (SERS) in LFA detection technique, the utilization of aptamers in LFA detection technique, and the utilization of DNA barcodes in LFA detection technique. By integrating these advanced techniques, there is significant potential to overcome the limitations of LFA, including low sensitivity, poor specificity, inability to quantify, and false positives, thereby enabling broader applications in resource-constrained settings. Additionally, this article comprehensively evaluates the strengths and weaknesses of each approach, underscoring the immense developmental potential of AuNPs-based LFA in point-of-care testing (POCT).</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Untargeted Metabolomics and Proteomics-Based Research of the Long-Term Exercise on Human Body.","authors":"Wenqian Zhuang, Yang Wang, Xin Xu, Jingjing Zhao","doi":"10.1007/s12010-025-05195-3","DOIUrl":"https://doi.org/10.1007/s12010-025-05195-3","url":null,"abstract":"<p><p>Regular long-term exercise can benefit the body and reduce the risk of several diseases, such as cardiovascular disease, diabetes, and obesity. However, the proteomic and metabolomic changes, as well as the physiological responses associated with long-term exercise, remain incompletely understood. To investigate the effects of long-term exercise on the human body, 14 subjects with long-term exercise habits and 10 subjects without exercise habits were selected for this study. Morning urine samples were collected and analyzed for untargeted metabolomics and proteomics using liquid chromatography-mass spectrometry. A total of 404 differential metabolites and 394 differential proteins were screened in this research, and the analysis results indicated that long-term exercise may affect energy metabolism, amino acid synthesis and metabolism, nucleotide metabolism, steroid hormone biosynthesis, and the inflammatory response. These findings offer a more comprehensive understanding of the molecular effects of long-term exercise on the human body and provide a basis for future research exploring the underlying mechanisms.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ZACN Associated with Poor Prognosis Promotes Proliferation of Kidney Renal Clear Cell Carcinoma Cells by Inhibiting JTC801-Induced Alkaliptosis.","authors":"Yifan Li, Can Li","doi":"10.1007/s12010-025-05197-1","DOIUrl":"https://doi.org/10.1007/s12010-025-05197-1","url":null,"abstract":"<p><p>Alkaliptosis, crucial in various cancers, is a specific form of cell death. This study aims to screen a prognosis-related gene in kidney renal clear cell carcinoma (KIRC) using the alkaliptosis gene set and to investigate the roles of the gene in KIRC and its association with alkaliptosis. Transcriptome and clinical information of KIRC patients were collected from the TCGA-KIRC and GSE29609 database. We detected ZACN levels in normal kidney cells and KIRC cells and assessed the ZACN and JTC801-induced alkaliptosis relationship using immunoblotting and pH measurement. In the alkaliptosis gene set (IKBKB, NFKB1, CA9, CHUK, IKBKG, and RELA), NFKB1, CHUK, and IKBKG exhibited differential expression in TCGA-KIRC. Based on these three genes, two alkaliptosis patterns were identified in TCGA-KIRC. The independent prognostic gene for KIRC, ZACN, was screened. High ZACN in KIRC patients indicated a poor prognosis. ZACN was inversely related to the infiltration of anti-cancer immune cells such as CD4 + T cells, macrophages, and neutrophils, and it regulated the immune checkpoint and gene mutations. Patients characterized by high ZACN levels exhibited a heightened drug sensitivity to ABT737_1910, 5-Fluorouracil_1073, etc. ZACN expression in KIRC cells was increased relative to normal kidney cells and was inhibited in a concentration-dependent manner by JTC801. ZACN overexpression suppressed p-p65/p65 expression, increased expression of CA9, and lowered intracellular pH. In KIRC, ZACN inhibits JTC801-induced alkaliptosis. This study sheds light on a novel mechanism involving ZACN and alkaliptosis in KIRC, offering a promising avenue for further research and potential therapeutic interventions in KIRC management.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Update of Fungal Endophyte Diversity and Strategies for Augmenting Therapeutic Potential of their Potent Metabolites: Recent Advancement.","authors":"Chandrabhan Prajapati, Sachchida Nand Rai, Anurag Kumar Singh, Balu A Chopade, Yashveer Singh, Santosh Kumar Singh, Shafiul Haque, Miguel Angel Prieto, Ghulam Md Ashraf","doi":"10.1007/s12010-024-05098-9","DOIUrl":"https://doi.org/10.1007/s12010-024-05098-9","url":null,"abstract":"<p><p>Endophytic fungi represent a significant renewable resource for the discovery of pharmaceutically important compounds, offering substantial potential for new drug development. Their ability to address the growing issue of drug resistance has drawn attention from researchers seeking novel, nature-derived lead molecules that can be produced on a large scale to meet global demand. Recent advancements in genomics, metabolomics, bioinformatics, and improved cultivation techniques have significantly aided the identification and characterization of fungal endophytes and their metabolites. Current estimates suggest there are approximately 1.20 million fungal endophytes globally, yet only around 16% (190,000) have been identified and studied in detail. This underscores the vast untapped potential of fungal endophytes in pharmaceutical research. Research has increasingly focused on the transformation of bioactive compounds by fungal endophytes through chemical and enzymatic processes. A notable example is the anthraquinone derivative 6-O-methylalaternin, whose cytotoxic potential is enhanced by the addition of a hydroxyl group, sharing structural similarities with its parent compound macrosporin. These structure-bioactivity studies open up new avenues for developing safer and more effective therapeutic agents by synthesizing targeted derivatives. Despite the immense promise, challenges remain, particularly in the large-scale cultivation of fungal endophytes and in understanding the complexities of their biosynthetic pathways. Additionally, the genetic manipulation of endophytes for optimized metabolite production is still in its infancy. Future research should aim to overcome these limitations by focusing on more efficient cultivation methods and deeper exploration of fungal endophytes' genetic and metabolic capabilities to fully harness their therapeutic potential.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143187884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Evaluation and Optimization of the Different Process Parameters of Mild Acid Pretreatment of Waste Lignocellulosic Biomass for Enhanced Energy Procreation.","authors":"Uma Kumari, Pratibha Gupta","doi":"10.1007/s12010-025-05180-w","DOIUrl":"https://doi.org/10.1007/s12010-025-05180-w","url":null,"abstract":"","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143078286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Excellent Laccase Mimic Activity of Cu-Melamine and Its Applications in the Degradation of Congo Red.","authors":"Siyuan Chai, Enze Huang, Jiashuai Zeng, Yangyang Shi, Jiashuo Zhang, Xia Zhang","doi":"10.1007/s12010-024-05172-2","DOIUrl":"https://doi.org/10.1007/s12010-024-05172-2","url":null,"abstract":"<p><p>Copper-based nanozyme has shown the superior in the oxidase-like activities due to its electron transfer ability between the Cu(I) and Cu(II) sites during the catalytic reactions. Herein, a Cu(I)-MOF (Cu-Mel) was readily synthesized by a traditional hydrothermal process using the precursors of Cu<sup>+</sup> and melamine, which was then used in the laccase-like catalytic reactions for the first time. Some means, such as X-ray diffraction (XRD), Scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS), were employed to character the microstructure of the Cu-Mel. The catalytic oxidation of the 4-aminoantipyrine (4-AP) and 2,4-dichlorophenol (2,4-DP) was adopted to evaluate the laccase-like catalytic ability of the resulting Cu-Mel. The catalytic conditions including the temperatures, the presence of alcohols, and the ionic concentrations were varied to optimize the laccase-like activities, based on that, the highest laccase-like catalytic activity is presented with a higher maximum reaction rate (V<sub>max</sub>). The good storage stability is also presented by the Cu-Mel. The Cu-Mel was utilized in the degradation of Congo red, showing a good degradation efficiency. These findings facilitate the development of the laccase mimics and serve as a foundation for the design and applications of Cu-MOFs in the nanozyme realm.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143073377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identification of PIF1 as a Ferroptosis-Related Prognostic Biomarker Correlated with Immune Infiltration in Hepatocellular Carcinoma.","authors":"Feng Liu, Pengyu Yin, Lifang Lu, Jingchun Yao, Baoping Jiao","doi":"10.1007/s12010-024-05161-5","DOIUrl":"https://doi.org/10.1007/s12010-024-05161-5","url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is a primary liver malignancy characterized by high morbidity and mortality. Recently, ferroptosis has been recognized as an important factor in regulating cell growth in HCC. However, the role of ferroptosis-related genes in HCC remains unclear. The SRP119173 dataset from the Sequence Read Archive database was used to screen differentially expressed genes (DEGs) related to ferroptosis. Meanwhile, weighted gene co-expression network analysis was conducted to identify the HCC-related gene modules in the TCGA-liver hepatocellular carcinoma (LIHC) cohort. Next, the candidate genes related to HCC progression and ferroptosis were identified by Venn analysis. Kaplan-Meier, multivariate COX regression, and CIBERSORT analyses were then performed. Our results found that the levels of PIF1 5'-to-3' DNA helicase (PIF1) were notably elevated in HCC tissues relative to normal tissues. Additionally, HCC patients with high PIF1 expression had worse overall survival outcomes than patients with low PIF1 expression. Additionally, the PIF1 gene could independently predict HCC patients' prognosis. Meanwhile, HCC patients with high PIF1 levels had a higher proportion of regulatory T cells (Tregs) and M0 macrophages, as well as higher expression of immune checkpoints such as PD-1 (PDCD1) and PD-L1 (CD274), compared with patients with low PIF1 levels. Our data suggested that a ferroptosis-related gene PIF1 may serve as a potential biomarker for predicting prognosis in HCC patients.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143062912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Targeted Delivery of SmacN7 Peptide Induces Immunogenic Cell Death in Cervical Cancer Treatment.","authors":"Yan Dai, Shentao Lu, Linna Wei, Lubin Liu","doi":"10.1007/s12010-024-05129-5","DOIUrl":"https://doi.org/10.1007/s12010-024-05129-5","url":null,"abstract":"<p><p>Cervical cancer is a common tumor in women and one of the common causes of cancer death in women. Due to the aggressive and non-specific nature of traditional chemotherapy, there is a growing need for new treatment modalities. Currently, tumor immunotherapy is increasingly garnering attention as a disruptive treatment approach. Therefore, we constructed CCTP-SmacN7, a delivery system capable of releasing active molecules in the tumor microenvironment. CCTP-SmacN7 can not only inhibit tumor proliferation and migration, but also induce tumors to produce large amounts of reactive oxygen species. The production of reactive oxygen species can activate tumors to release or expose damage-associated molecular patterns, promote DC cell maturation, and ultimately activate T cells. Here, we present an innovative targeted treatment approach for cervical cancer. While inducing tumor immunogenic cell death, this program can also improve the tumor microenvironment and initiate the tumor immune cycle.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143035855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alaiana Santos Silva, Karollaine Moura Neves, Rayssa Falcão Freitas, Thiago Pereira das Chagas, Luiz Carlos Salay, Erik Galvão Paranhos da Silva, Ana Paula Trovatti Uetanabaro, Andréa Miura da Costa
{"title":"Valorization of Cocoa and Peach-Palm Wastes for the Production of Amylases by Pleurotus pulmonarius CCB19 and Its Application as an Additive in Commercial Detergents.","authors":"Alaiana Santos Silva, Karollaine Moura Neves, Rayssa Falcão Freitas, Thiago Pereira das Chagas, Luiz Carlos Salay, Erik Galvão Paranhos da Silva, Ana Paula Trovatti Uetanabaro, Andréa Miura da Costa","doi":"10.1007/s12010-024-05147-3","DOIUrl":"https://doi.org/10.1007/s12010-024-05147-3","url":null,"abstract":"<p><p>In the context of agribusiness, the agricultural and livestock sectors generate a considerable quantity of waste on a daily basis. Solid-state fermentation (SSF) represents a potential alternative for mitigating the adverse effects of residue accumulation and for producing high-value products such as enzymes. Pleurotus pulmonarius is capable of producing a number of commercial enzymes, including amylases. Accordingly, the present study sought to produce, characterize, and apply amylases obtained from solid-state fermentation of cocoa and peach-palm waste by the fungus Pleurotus pulmonarius CCB19. The highest amylase production by P. pulmonarius was observed after 3 days of solid-state fermentation of the cocoa shells, with an activity of 83.90 U/gds. The physicochemical characterization of the crude amylase using the artificial neural network (ANN) revealed that the highest activity was observed at pH 9 and a temperature of 20 °C (120.7 U/gds). Furthermore, the amylase demonstrated stability in the majority of the tested conditions, maintaining up to 80% of its residual activity for up to 120 min of incubation. With regard to the impact of ions and reagents on enzymatic activity, a positive effect was observed in the presence of Co<sup>+</sup> ions at concentrations of 1 and 5 mM, whereas Cu<sup>+</sup> ions at 5 mM demonstrated an inhibitory effect. The addition of SDS and EDTA reagents did not affect the observed activity. Furthermore, the extract was tested in commercial detergent formulations and demonstrated enhanced compatibility (110%) and efficacy (270% with boiled detergent) in removing starch stains from fabrics with Ariel liquid detergent. In conclusion, amylase derived from the fungus Pleurotus pulmonarius CCB19 exhibited favorable properties that make it a suitable candidate for use as an additive in laundry detergent formulations.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}