Applied Biochemistry and Biotechnology最新文献

筛选
英文 中文
A Comprehensive Review on Preparation of Silver Nanoparticles from a Bacteriocin for the Natural Preservation of Food Products.
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2024-12-02 DOI: 10.1007/s12010-024-05122-y
Ashmitha Kalairaj, Swethashree Rajendran, R Karthikeyan, Rames C Panda, T Senthilvelan
{"title":"A Comprehensive Review on Preparation of Silver Nanoparticles from a Bacteriocin for the Natural Preservation of Food Products.","authors":"Ashmitha Kalairaj, Swethashree Rajendran, R Karthikeyan, Rames C Panda, T Senthilvelan","doi":"10.1007/s12010-024-05122-y","DOIUrl":"https://doi.org/10.1007/s12010-024-05122-y","url":null,"abstract":"<p><p>Food preservation aims to maintain safe and nutritious food for extended periods by inhibiting microbial growth that causes spoilage and poses health risks. Traditional chemical preservatives like sodium sulfite, sodium nitrite, sodium benzoate, tBHQ and BHA have raised concerns due to potential carcinogenicity, genotoxicity and allergies with long-term consumption. As a natural alternative, bacteriocins have emerged for food preservation. These ribosomally synthesised antimicrobial peptides are produced by various microorganisms, including bacteria, fungi and yeast, typically during their stationary growth phase. Bacteriocins are categorised into four classes based on structure and function, with molecular weights averaging between 30 and 80 kDa. They exhibit antimicrobial activity against a range of bacteria, mediating complex interactions between bacterial species and enhancing competitiveness and survival of producer strains. Both gram-positive and gram-negative bacteria produce bacteriocins. Recent advancements have identified and optimized bacteriocins for applications in food technology, extending shelf life, managing foodborne illnesses and contributing to public health preservation. Their eco-friendly nature and safety profile make bacteriocins promising for future food preservation strategies without detrimental effects on humans or animals. The current review has mainly focused on the preservation of food products using bacteriocin.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142765254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Study on Mechanical Properties of Cured Sand Combined with Plant-Based Bio-cement (PBBC) and Organic Materials.
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2024-12-02 DOI: 10.1007/s12010-024-05131-x
Xiao Fu, Wan-Jun Ye, Gang Yuan, Xue-Li Zhang, Rui-Yuan Niu
{"title":"Experimental Study on Mechanical Properties of Cured Sand Combined with Plant-Based Bio-cement (PBBC) and Organic Materials.","authors":"Xiao Fu, Wan-Jun Ye, Gang Yuan, Xue-Li Zhang, Rui-Yuan Niu","doi":"10.1007/s12010-024-05131-x","DOIUrl":"https://doi.org/10.1007/s12010-024-05131-x","url":null,"abstract":"<p><p>Bio-cement is a green and energy-saving building material, which has received wide attention in the field of ecological environment and geotechnical engineering in recent years. The aim of this study is to investigate the improvement effect of plant-based bio-cement (PBBC) in synergistic treatment of sand with organic materials, to highlight the effective use of tap water in PBBC, and to analyze the crack evolution pattern during the damage of specimens by using image processing techniques. The results showed that tap water can be used as a solvent for PBBC instead of deionized water. The characteristic trend of urease solutions prepared at different temperature environments was obvious, and the activity value of urease solution with low concentration is positively correlated with the ambient temperature, although the activity value is not high, it is not easy to inactivate. The incorporation of organic materials increased the peak stress up to 1809.30 kPa compared to the specimens modified only by PBBC. The damage of the specimens under uniaxial compression consisted of four stages: compaction, elastic deformation, pre-peak brittle damage and post-peak macroscopic damage. The corresponding crack evolution is the interpenetration of small-sized cracks into large-sized main cracks. The large-sized main cracks transform into penetration cracks before damage, and the small-sized cracks are distributed around the penetration cracks. The crack evolution parameters obtained by MATLAB processing are positively correlated with the strain.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142765241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GC-MS Analysis of Polysaccharides from an Intergeneric Hybrid of Pleurotus florida and Cordyceps militaris: A Comparative Study.
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2024-11-29 DOI: 10.1007/s12010-024-05121-z
Varsha Meshram, Prachi Thakur, Shailesh Kumar Jadhav, Nagendra Kumar Chandrawanshi
{"title":"GC-MS Analysis of Polysaccharides from an Intergeneric Hybrid of Pleurotus florida and Cordyceps militaris: A Comparative Study.","authors":"Varsha Meshram, Prachi Thakur, Shailesh Kumar Jadhav, Nagendra Kumar Chandrawanshi","doi":"10.1007/s12010-024-05121-z","DOIUrl":"https://doi.org/10.1007/s12010-024-05121-z","url":null,"abstract":"<p><p>Edible and medicinal mushrooms are valuable sources of polysaccharides, known for their dual roles as immunostimulants and immunosuppressants. This study aimed to enhance polysaccharide content by fusing two mushroom species, P. florida and C. militaris, while exploring their antioxidant and antibacterial potential. These mushrooms have diverse health benefits, including lowering high cholesterol, providing anti-inflammatory effects, supporting diabetes management, aiding in cancer treatment, and enhancing the efficacy of COVID-19 vaccines. Successful hyphal fusion was achieved, and optimal culture conditions were determined using response surface methodology. The hybrids exhibited superior growth compared to the parental strains. Hyphal fusion improved several attributes, resulting in diverse hybrids with increased biomass and metabolite production. FTIR analysis confirmed the presence of exopolysaccharides, with concentrations measured at 28.4 g/L (P1), 31.50 g/L (CD), and 36.74 g/L (F3). GC-MS analysis identified various bioactive metabolites, including a higher concentration of dimethyl palmitamine in the hybrid, a novel compound, butanenitrile, 2-(methoxymethoxy), which was not found in the parental strains. These compounds are likely responsible for the enhanced antimicrobial and antioxidant activities.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aptamer-Based Detection of Foot-and-Mouth Disease Virus Using Single-Stranded DNA Probe. 利用单链 DNA 探针进行基于色聚体的口蹄疫病毒检测
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2024-11-28 DOI: 10.1007/s12010-024-05093-0
Nor Aina Nordin, Samson Soon, Jamaliah B Senawi, Zurin Azlin M Jinin, Siti Suri Arshad, Abdul Rahaman Yasmin, Farah Asilah Azri
{"title":"Aptamer-Based Detection of Foot-and-Mouth Disease Virus Using Single-Stranded DNA Probe.","authors":"Nor Aina Nordin, Samson Soon, Jamaliah B Senawi, Zurin Azlin M Jinin, Siti Suri Arshad, Abdul Rahaman Yasmin, Farah Asilah Azri","doi":"10.1007/s12010-024-05093-0","DOIUrl":"https://doi.org/10.1007/s12010-024-05093-0","url":null,"abstract":"<p><p>Foot-and-mouth disease (FMD) is known for its highly contagious properties among cloven-hoofed animals resulting in significant morbidity rates. Incursions of this disease have caused significant losses in affected countries in Southeast Asia and Africa, even within EU countries which resulted in significant financial losses. This study is aimed at addressing existing limitations by creating a diagnostic method using aptamer-based assay. Three DNA aptamers were engineered to target the VP2 region of the FMD viral capsid protein. Since VP2 demonstrates a highly conserved amino acid sequence across serotypes, the specifically designed aptamers can detect different serotypes of the virus. Aptamers were evaluated against VP2 capsid protein, which was synthesized based on sequences from serotypes A, O, and Asia 1 of the FMD virus. After the recombinant VP2 capsid protein was developed, expressed, and refined, it was applied using enzyme-linked aptamer sorbent assay (ELASA) to determine aptamers' binding capability. A similar test was further conducted with purified FMD virus from serotype A and serotype O. The ELASA results displayed a notable sensitivity in identifying the FMDV. Under optimized conditions, the aptamers have LOD as low as 0.11 ng/mL with LOQ as low as 0.34 ng/mL. The binding strength analyzed using the equilibrium dissociation constant (Kd) showed strong binding affinity at 3.092 ± 0.05 nM. Based on these findings, the method shows significant potential with high sensitivity and specificity for FMD virus detection assay.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142738110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Durvalumab and T-DXd Synergistically Promote Apoptosis of Cholangiocarcinoma Cells by Downregulating EGR1 Expression Through Inhibiting P38 MAPK Pathway. 通过抑制 P38 MAPK 通路下调 EGR1 表达,Durvalumab 和 T-DXd 协同促进胆管癌细胞凋亡
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2024-11-28 DOI: 10.1007/s12010-024-05112-0
Yuepeng Wang
{"title":"Durvalumab and T-DXd Synergistically Promote Apoptosis of Cholangiocarcinoma Cells by Downregulating EGR1 Expression Through Inhibiting P38 MAPK Pathway.","authors":"Yuepeng Wang","doi":"10.1007/s12010-024-05112-0","DOIUrl":"https://doi.org/10.1007/s12010-024-05112-0","url":null,"abstract":"<p><p>Cholangiocarcinoma is a hepatobiliary system tumor with a high mortality rate. Although durvalumab and trastuzumab deruxtecan (T-DXd) have shown efficacy in treating cancers such as non-small cell lung cancer, their effects and regulatory mechanisms in cholangiocarcinoma remain unclear. In this study, we aimed to investigate the role and mechanism of durvalumab and T-DXd in inducing apoptosis in cholangiocarcinoma cells. Cholangiocarcinoma cells were treated with varying concentrations of durvalumab and T-DXd, either individually or in combination, to evaluate their effects. Apoptosis was quantified using flow cytometry. Quantitative real-time PCR (qPCR) and Western blotting were used to measure the mRNA expression and protein levels of genes associated with apoptosis and cell cycle regulation. The underlying mechanism was further explored through pathway enrichment analysis of differentially expressed genes (DEGs) and corroborated by qPCR and Western blotting. Xenotransplantation models using immune-deficient NOD-SCID/IL2Rγnull (NSG) mice were established to assess the in vivo effects of durvalumab and T-DXd. Our results showed that both durvalumab and T-DXd inhibited cholangiocarcinoma cell proliferation in a dose-dependent manner. Both agents promoted apoptosis and arrested the cell cycle of cholangiocarcinoma cells, with the combination treatment having the most significant effect. Furthermore, treatment with durvalumab, T-DXd, and the combination downregulated the protein levels of early growth response 1 (EGR1) by inactivating the p38 mitogen-activated protein kinase (MAPK) pathway. In vivo experiments indicated that durvalumab and T-DXd prolonged the survival of NSG mice bearing cholangiocarcinoma xenografts. In conclusion, our findings demonstrated that durvalumab and T-DXd synergistically promoted apoptosis in cholangiocarcinoma cells by inhibiting EGR1 expression through inactivation of the p38 MAPK pathway. This study confirmed the potential of durvalumab and T-DXd for the treatment of cholangiocarcinoma.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142738114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A sustainable and Integrated Microbial Biocatalysis of Resveratrol from Polygonum cuspidatum Siebold & Zucc Using Cellulose-Based Immobilised Aspergillus niger with Deep Eutectic Solvent-Assisted Microreactors. 利用基于纤维素的固定化黑曲霉与深共晶溶剂辅助微反应器,对何首乌中的白藜芦醇进行可持续的综合微生物生物催化。
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2024-11-28 DOI: 10.1007/s12010-024-05118-8
Shuang Jin, Yubin Ren, Cailiang Peng, Yupeng Cheng, Weili Liu, Yujie Fu, Chen Lv, Hongyao Cai
{"title":"A sustainable and Integrated Microbial Biocatalysis of Resveratrol from Polygonum cuspidatum Siebold & Zucc Using Cellulose-Based Immobilised Aspergillus niger with Deep Eutectic Solvent-Assisted Microreactors.","authors":"Shuang Jin, Yubin Ren, Cailiang Peng, Yupeng Cheng, Weili Liu, Yujie Fu, Chen Lv, Hongyao Cai","doi":"10.1007/s12010-024-05118-8","DOIUrl":"https://doi.org/10.1007/s12010-024-05118-8","url":null,"abstract":"<p><p>An efficient and green method was developed using deep eutectic solvent assistance to enhance the biotransformation method of producing resveratrol from Polygonum cuspidatum Siebold & Zucc, using cellulose-based immobilised Aspergillus niger in the process. Various deep eutectic solvents (DES) were screened to obtain a superior biocatalytic effect. The increase in DES concentration aggravated the degree of cell membrane damage. Natural deep eutectic solvents (NADES) exhibited a more favourable catalytic effect than DES due to their excellent biocompatibility. This enhancement is associated with the hydrogen bonding donor components present in NADES, with catalytic ability ranking as alcohol-based > sugar-based > organic acid. CHCL/EG exhibited the maximum catalytic effect at 1.0 wt%. Under optimal conditions (pH 6.5; temperature, 29.5 °C; ratio of liquid to solid 20:1 (mL/g), and time 47 h), the resveratrol yield reached 32.79 mg/g, which was 13.06-fold to that of the untreated sample (2.51 mg/g). The residual activity of the cellulose-based microreactor was 81.46% after ten trials. The proposed method was successfully employed, demonstrating higher biocatalysis efficiencies and superior environmental protection compared to conventional solvents for resveratrol biocatalysis.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142738107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing Lignin Nanoparticles for Sustainable Enzyme Immobilization: Current Paradigms and Future Innovations. 利用木质素纳米颗粒实现可持续的酶固定化:当前范例与未来创新。
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2024-11-28 DOI: 10.1007/s12010-024-05133-9
Babbiker Mohammed Taher Gorish, Waha Ismail Yahia Abdelmula, Sivasamy Sethupathy, Ashenafi Berhanu Robele, Daochen Zhu
{"title":"Harnessing Lignin Nanoparticles for Sustainable Enzyme Immobilization: Current Paradigms and Future Innovations.","authors":"Babbiker Mohammed Taher Gorish, Waha Ismail Yahia Abdelmula, Sivasamy Sethupathy, Ashenafi Berhanu Robele, Daochen Zhu","doi":"10.1007/s12010-024-05133-9","DOIUrl":"https://doi.org/10.1007/s12010-024-05133-9","url":null,"abstract":"<p><p>Lignin, a vital plant component, is key in providing structural integrity and is the second most abundant biopolymer in nature. The growing interest in sustainable and efficient biocatalysis has driven the exploration of lignin nanoparticles (LNPs) as a promising platform for enzyme immobilization. Given lignin's abundance and structural role in plants, converting it into nanoparticles offers a potential eco-friendly alternative to traditional supports. This comprehensive review explores recent advancements in using LNPs for enzyme immobilization, focusing on loading techniques, immobilization efficiency, enzyme activity levels, and various factors that affect the performance of enzymes immobilized on LNPs. The review also addresses the primary challenges associated with enzyme immobilization on LNPs and discusses future innovations in this field. Adopting eco-friendly immobilization platforms based on LNPs is expected to have broad applications in industries like food, pharmaceuticals, animal feed, and detergents. However, there is still potential to customize LNPs further and develop novel immobilization techniques to leverage their benefits fully. By understanding the properties and advantages of these nanostructured lignin supports, researchers can design and create innovative nanocatalysts for various industrial applications.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142738117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Polyclonal Antibodies for the Preliminary Characterization of GPATCH1, a Novel Splicing Factor Associated with Human Osteoporosis. 开发多克隆抗体以初步鉴定与人类骨质疏松症有关的新型剪接因子 GPATCH1。
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2024-11-28 DOI: 10.1007/s12010-024-05132-w
Aikedaimu Abudukeremu, Guliqiati Azatibieke, Gulisitan Yimiti, Yaqun Guan, Zhe Chen
{"title":"Development of Polyclonal Antibodies for the Preliminary Characterization of GPATCH1, a Novel Splicing Factor Associated with Human Osteoporosis.","authors":"Aikedaimu Abudukeremu, Guliqiati Azatibieke, Gulisitan Yimiti, Yaqun Guan, Zhe Chen","doi":"10.1007/s12010-024-05132-w","DOIUrl":"https://doi.org/10.1007/s12010-024-05132-w","url":null,"abstract":"<p><p>Specific antibodies, which can be used in various experiments, are critical tools for unraveling genes' function, but many commercial antibodies are not tested for these properties. GPATCH1 is a novel G-patch family protein. Genome-wide association studies (GWAS) revealed it as a gene associated with human osteoporosis, and yeast-based research suggested it may be a splicing factor; however, its molecular mechanism remains a mystery. We report here that currently available commercial GPATCH1 antibodies have poor specificity and are not recommended for immunoprecipitation. We elucidated the apparent molecular weight of GPATCH1 to evaluate the antibodies' specificity. Based on this, a specific polyclonal antibody against GPATCH1 that can be used for Western blotting, immunoprecipitation and immunofluorescence was prepared. With the antibodies, we found that GPATCH1 may be a tissue-specific splicing factor. Our study lays the groundwork for further investigations into the molecular mechanisms by which GPATCH1 affects bone metabolism in the future.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142738112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Knockdown of HOTAIR Alleviates High Glucose-Induced Apoptosis and Inflammation in Retinal Pigment Epithelial Cells. 敲除 HOTAIR 可缓解高血糖诱导的视网膜色素上皮细胞凋亡和炎症。
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2024-11-28 DOI: 10.1007/s12010-024-05083-2
Yanping Wu, Zenghui Liang, Kun Li, Junli Feng
{"title":"Knockdown of HOTAIR Alleviates High Glucose-Induced Apoptosis and Inflammation in Retinal Pigment Epithelial Cells.","authors":"Yanping Wu, Zenghui Liang, Kun Li, Junli Feng","doi":"10.1007/s12010-024-05083-2","DOIUrl":"https://doi.org/10.1007/s12010-024-05083-2","url":null,"abstract":"<p><p>Diabetic retinopathy (DR) is one of the most common microvascular complications in diabetes. Accumulating evidence demonstrated that long non-coding RNAs (lncRNAs) played critical regulatory roles in DR. However, the role of lncRNA HOX Transcript Antisense Intergenic RNA (HOTAIR) in the high glucose (HG)-induced human retinal pigment epithelial (RPE) cell injury remains unclear. Herein, we found the expression of HOTAIR was increased in the retina of DR rats and HG-induced ARPE-19 cells. Knockdown of HOTAIR improved viability, inhibited apoptosis, increased Bcl-2 protein levels, and decreased Bax and cleaved caspase 3 protein levels in HG-treated ARPE-19 cells. Moreover, enzyme-linked immunosorbent assay showed that HOTAIR silencing reduced interleukin 6 and tumor necrosis factor-α release of ARPE-19 cells under HG conditions. Mechanistically, luciferase reporter assay and RNA immunoprecipitation assay validated that HOTAIR could directly sponge miR-326 to upregulate transcription factor 4 (TCF4) expression. Furthermore, rescue experiments confirmed that HOTAIR promoted apoptosis and inflammation of HG-treated ARPE-19 cells by the miR-326/TCF4 axis. In summary, HOTAIR enhanced HG-induced retinal pigment epithelial cell injury by promoting apoptosis and inflammation, shedding light on the importance of HOTAIR as a novel potential target for DR treatment.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142738120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Analysis of Aptamer-Conjugated Chemical and Green Synthesized Gold Nanoparticles for Targeted Therapy in MCF-7 Cancer Cells. 用于 MCF-7 癌细胞靶向治疗的化学合成金纳米粒子与绿色合成金纳米粒子的比较分析
IF 3.1 4区 生物学
Applied Biochemistry and Biotechnology Pub Date : 2024-11-27 DOI: 10.1007/s12010-024-05091-2
Mariam W Helal, Mohanad M Faried, Sohaila Mohammed Salah, Mazen Ashraf, Nada Nasser, Yasser Shawky, Sara Hamdy, Azza El Amir, Wajeet Nabil, Dalia M El-Husseini
{"title":"Comparative Analysis of Aptamer-Conjugated Chemical and Green Synthesized Gold Nanoparticles for Targeted Therapy in MCF-7 Cancer Cells.","authors":"Mariam W Helal, Mohanad M Faried, Sohaila Mohammed Salah, Mazen Ashraf, Nada Nasser, Yasser Shawky, Sara Hamdy, Azza El Amir, Wajeet Nabil, Dalia M El-Husseini","doi":"10.1007/s12010-024-05091-2","DOIUrl":"https://doi.org/10.1007/s12010-024-05091-2","url":null,"abstract":"<p><p>Breast cancer remains a challenging health issue, demanding innovative treatment approaches that maximize efficacy while minimizing damage to healthy cells. Targeted therapy offers a promising strategy tailored to the unique characteristics of breast cancer tumors. Gold nanoparticles have been studied in the context of their therapeutic potential towards cancer treatment showing great success. Recently, aptamers were also investigated for their targeting efficiency towards specific receptors allowing their use in targeting delivery systems. In this study, computational analysis was used to confirm the strong binding between AS1411 aptamer and the nucleolin receptor extensively present on the surface of breast cancer cells, highlighting the aptamer's potential for specific targeting. Furthermore, we investigated and compared the use of AS1411 aptamer-conjugated chemically synthesized (GNPs) and flaxseed-green-synthesized (Fs-GNPs) gold nanoparticles as targeting therapeutic systems for breast cancer cells. Our results showed successful conjugation of the AS1411 aptamer with both, the GNPs and Fs-GNPs. Characterization of the nanoparticles and their conjugates validates their size, charge, and morphology, affirming the success of the conjugation process. Cytotoxicity assessments using the MTT assay demonstrated the effectiveness of the conjugates against breast cancer cells, with the AS1411-Fs-GNPs conjugate exhibiting higher inhibitory efficacy, featuring an IC<sub>50</sub> value of 11.13 µg/ml. In contrast, they showed minimal effect on normal cells, emphasizing the selectivity and potential safety of these therapies. To our knowledge, this is the first report of conjugating AS1411 aptamer to green-synthesized gold nanoparticles and its use as a targeting therapeutic system.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142724521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信